MYERS ENGINEERING

LATERAL ANALYSIS & GRAVITY CALCULATIONS

MUST BEAR ORIGINAL BLUE INK SIGNATURE OR DIGITAL PDF SIGNATURE FOR PERMIT SUBMITTAL.

Project: American Classic Homes 80xx Southeast 20th Street Mercer Island, WA

April 1, 2021

2018 INTERNATIONAL BUILDING CODE 100 MPH WIND, EXPOSURE C, K_{zt} = 1.00 RISK CATEGORY II - SOIL SITE CLASS D SEISMIC DESIGN CATEGORY D (IBC)

3206 50th Street Court, Suite 210-B Gig Harbor, WA 98335 Phone: 253-858-3248

Email: myengineer@centurytel.net

3206 50th Street Ct NW, Ste 210-B PROJECT :80xx SE 20th Street Email: myengineer@centurytel.net

Gig Harbor, WA 98335

Phone: 253-858-3248

DESIGN LOADS:

ROOF DEAD LOADS

15 PSF Total

ROOF LIVE LOADS

25 PSF (Snow)

FLOOR DEAD LOADS

15 PSF Total

FLOOR LIVE LOADS

40 PSF (Reducible)

STAIR LIVE LOADS

100 PSF

WOODS:

WOOD TYPE:

JOISTS OR RAFTERS 2X. BEAMS OR HEADERS 4X - 6X OR LARGER-----DF#2

LEDGERS AND TOP PLATES------HF#2

----HF#2

POSTS

4X4-----4X6------HF#2

6X6------DF#1

GLUED-LAMINATED (GLB) BEAM & HEADER.

Fb=2.400 PSI, Fv=165 PSI, Fc (Perp) =650 PSI, E=1,800,000 PSI.

PARALLAM (PSL) 2.0E BEAM & HEADER.

Fb=2.900 PSI, Fv=290 PSI, Fc (Perp) =750 PSI, E=2.000,000 PSI.

MICROLAM (LVL) 1.9E BEAM & HEADER

Fb=2,600 PSI, Fv=285 PSI, Pc (Perp) =750 PSI, E=1,900,000 PSI.

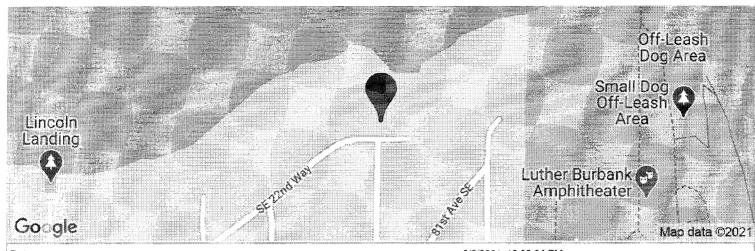
TIMBERSTRAND (LSL) 1.3E BEAM, HEADER, & RIM BOARD

Fb=1,700 PSI, Fv=400 PSI, Pc (Perp) =680 PSI, E=1,300,000 PSI.

TRUSSES:

PREFABRICATED WOOD TRUSSES SHALL BE DESIGNED BY A REGISTERED DESIGN PROFESSIONAL REGISTERED IN THE STATE OF WASHINGTON. TRUSS DESIGNS SHALL COMPLY WITH THE REQUIREMENTS OF IBC 2303.4. SUBMITTAL PACKAGE SHALL COMPLY WITH REQUIREMENTS OF IBC 2303.4.1.4.

UNLESS OTHERWISE SPECIFIED BY LOCAL BUILDING OFFICIAL OR STATUTE, TRUSS DESIGNS BEARING THE SEAL AND SIGNATURE OF THE TRUSS DESIGNER SHALL BE AVAILABLE AT TIME OF INSPECTION.


ENGINEERED I-JOISTS

-FLOOR JOISTS & BEAMS OF EQUAL OR BETTER CAPACITY MAY BE SUBSTITUTED FOR THOSE SHOWN ON THIS PLAN, "EQUAL" IS DEFINED AS HAVING MOMENT CAPACITY, SHEAR CAPACITY, AND STIFFNESS WITHIN 3% OF THE SPECIFIED JOISTS OR BEAMS.

80xx SE 20th St

Latitude, Longitude: 47.593, -122.2316

Date	3/2/2021, 12:00:04 PM
Design Code Reference Document	ASCE7-16
Risk Category	II
Site Class	D - Stiff Soil

Туре	Value .	Description
S _S	1.379	MCE _R ground motion. (for 0.2 second period)
S ₁	0.481	MCE _R ground motion. (for 1.0s period)
S _{MS}	1.379	Site-modified spectral acceleration value
S _{M1}	null -See Section 11.4.8 0.466	Site-modified spectral acceleration value
S _{DS}	0.92	Numeric seismic design value at 0.2 second SA
S _{D1}	null -See Section 11.4.8	Numeric seismic design value at 1.0 second SA

Туре	Value	Description
SDC	null -See Section 11.4.8	Seismic design category
F _a	1	Site amplification factor at 0.2 second
F _v	null -See Section 11.4.8	Site amplification factor at 1.0 second
PGA	0.59	MCE _G peak ground acceleration
F _{PGA}	1.1	Site amplification factor at PGA
PGA _M	0.649	Site modified peak ground acceleration
TL	6	Long-period transition period in seconds
SsRT	1.379	Probabilistic risk-targeted ground motion. (0.2 second)
SsUH	1.528	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration
SsD	3.077	Factored deterministic acceleration value. (0.2 second)
S1RT	0.481	Probabilistic risk-targeted ground motion. (1.0 second)
S1UH	0.536	Factored uniform-hazard (2% probability of exceedance in 50 years) spectral acceleration.
S1D	1.273	Factored deterministic acceleration value. (1.0 second)
PGAd	1.071	Factored deterministic acceleration value. (Peak Ground Acceleration)
C _{RS}	0.903	Mapped value of the risk coefficient at short periods
C _{R1}	0.896	Mapped value of the risk coefficient at a period of 1 s

LATERAL ANALYSIS :

BASED ON 2018 INTERNATIONAL BUILDING CODE (IBC)

Lateral Forces will be distributed along lines of Force/Resistance. Lines of Force/Resistance will be investigated for both wind and seismic lateral loads. Roof and Floor diaphragms are considered flexible.

Risk Category II per IBC 1604.5 & Soils Site Class D (Assumed)

SEISMIC DESIGN:

SEISMIC DESIGN BASED ON 2018 IBC Section 1613.1

LIGHT FRAME CONSTRUCTION LESS THAN THREE STORIES IN HEIGHT ABOVE GRADE.

Seismic Design Data:

$$C_d := 4$$

$$S_s := 1.379$$

$$S_1 := 0.481$$

$$S_{ms} := 1.379$$

$$S_{m1} := 0.866$$

Equation 11.4-3
$$S_{DS} := \frac{2}{3} \cdot S_{ms} = 0.92$$

Equation 11.4-4
$$S_{D1} := \frac{2}{3} \cdot S_{m1} = 0.58$$

--Seismic Design Category D (S $_{\rm DS}$ greater than 0.50g & S $_{\rm D1}$ greater than 0.20g)

Roof Slope Adjustment Factor:

$$S_a := \frac{1}{\cos\left(a\tan\left(\frac{5}{12}\right)\right)} = 1.08$$

Plan Area for Each Level:

$$A_1 := 1840 \text{ ft}^2 \cdot S_a$$
 $A_{2a} := 1612 \text{ ft}^2$ $A_{2b} := 1505 \text{ ft}^2 \cdot S_a$

$$A_{2a} := 1612 \text{ft}$$

$$A_{2b} := 1505 \text{ft}^2 \cdot \text{S}_a$$

Plan Perimeter for Each Level:

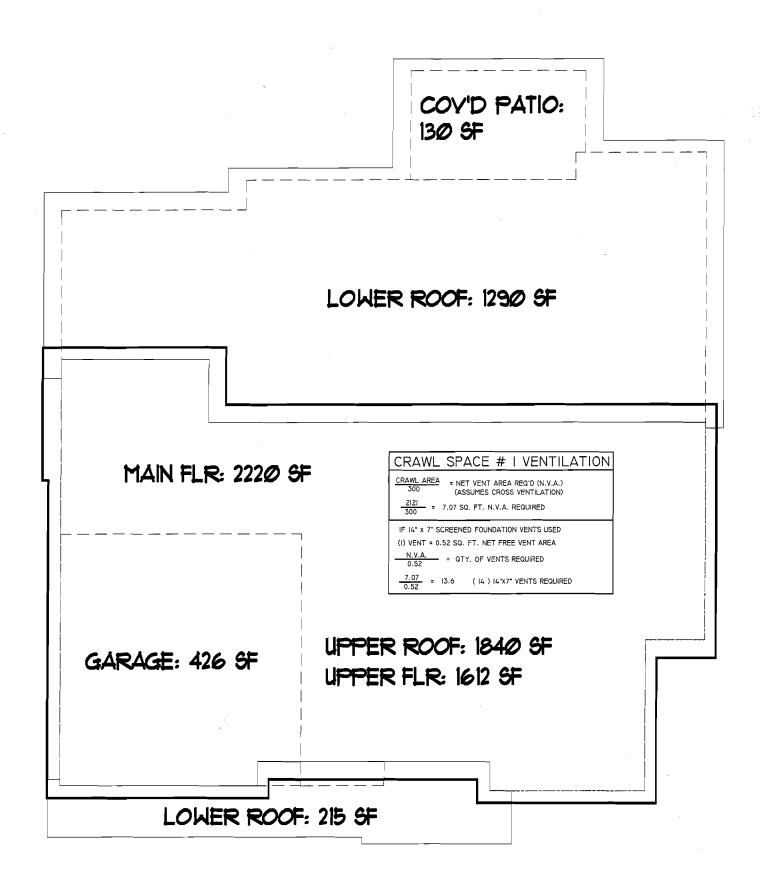
$$P_1 := 2(36ft) + 2(54ft)$$
 $P_2 := 2(54ft) + 2(54ft)$

$$P_2 := 2(54ft) + 2(54ft)$$

W,wx = Seismic Weight of Overall Structure, Seismic Weight of Structure above Level x (LB.)

Weight of Structure at Each Level:

Story Weight at Upper Floor:


$$\mathbf{w}_1 := 15 \cdot \mathbf{psf} \cdot \mathbf{A}_1 + 12 \cdot \mathbf{psf} \cdot 4.5 \cdot \mathbf{ft} \cdot \mathbf{P}_1$$

Weight of floors include 10psf weight of floor framing, flooring material, insulation, plus 10psf for miscellaneous interior walls.

Story Weight at Main Floor:

$$\mathbf{w}_2 := 20 \cdot \mathbf{psf} \cdot \mathbf{A}_{2a} + 15 \mathbf{psf} \cdot \mathbf{A}_{2b} + 12 \cdot \mathbf{psf} \cdot \left(4.5 \cdot \mathbf{ft} \cdot \mathbf{P}_1 + 5 \cdot \mathbf{ft} \cdot \mathbf{P}_2\right)$$

$$W := w_1 + w_2 = 118996.25 \text{ lb}$$

Approximate Fundamental Period, Ta.

$$C_t := 0.02$$
 $\chi := 0.75$ (per ASCE 7-16 Table 12.8-2)

$$C_t \coloneqq 0.02 \quad \chi \coloneqq 0.75 \quad \text{(per ASCE 7-16 Table 12.8-2)} \qquad h_n \coloneqq 24 \qquad \text{(Structural Height per ASCE 7-16 Sect. 11.2)}$$

$$T_a := C_t \cdot h_n^{\chi} = 0.22$$
 (ASCE 7-16 Eq. 12.8-7) $T_L := 6$ (per ASCE 7-16 Fig. 22-14)

$$T_r := 6$$
 (per ASCE 7-16 Fig. 22-14)

$${\rm T_a}$$
 is less than ${\rm T_L}$, therefore Cs need not exceed:

$$\frac{S_{D1}}{\left(\frac{R}{L_a}\right) \cdot T_a} = 0.41$$
 (ASCE 7-16 Eq. 12.8-3)

$$C_s$$
 shall not be less than: $0.044S_{DS} \cdot I_e = 0.04$

$$0.044S_{DS} \cdot I_e = 0.04$$

$$C_{\text{S}} \coloneqq \frac{S_{DS}}{\left(\frac{R}{I_{e}}\right)} = 0.14$$
 (ASCE 7-16 Eq. 12.8-2)

Total Base Shear:

$$V_E := C_s \cdot W = 16830.34 \, lb$$

Vertical Shear distribution at each level per ASCE 7-16 Eq. 12.8-12:

for structures having a period of 0.5 sec or less:

$$h_1 := 19ft$$
 $h_2 := 10ft$

$$h_2 = 100$$

(Height from base to level x)

$$C_{v1} := \frac{\left(\mathbf{w}_1 \cdot \mathbf{h}_1\right)}{\left(\mathbf{w}_1 \cdot \mathbf{h}_1 + \mathbf{w}_2 \cdot \mathbf{h}_2\right)} = 0.49$$

$$F_1 := C_{vl} \cdot V_E = 8192.17 lb$$

Story Shear at Upper Floor

$$C_{v2} := \frac{\left(w_2 \cdot h_2\right)}{\left(w_1 \cdot h_1 + w_2 \cdot h_2\right)} = 0.51$$

$$F_2 := C_{v2} \cdot V_E = 8638.17 \text{ lb}$$

Story Shear at Main Floor

WIND DESIGN

Use analytical procedure of ASCE 7-16 Chapter 27 (Directional Procedure for buildings of all heights)

V:= 100 Nominal 3-Sec Gust (MPH) for Risk Category II (Figure 26.5-1B).

 $K_d := 0.85$ Wind Directionality Factor (Table 26.6-1). $h := 24 \cdot ft$ Mean Roof Height as per Sect. 26.2

 $K_e := 1$ Ground Elevation Factor (Sect. 26.9)

Exposure Category C (ASCE 7-16 Sect. 26.7.3)

Topographic Factor (K_{zt}) (Figure 26.8-1): 2-D Escarpment with building downwind of crest.

$$x:=1$$
ft $H:=1$ ft $z:=h$ $\gamma:=2.5$ $\mu:=4$

$$K_1 := 0.85 \left(\frac{H}{L_h}\right) = 0.85 \qquad K_2 := \left(1 - \frac{x}{\mu L_h}\right) = 0.75 \qquad K_3 := e^{\frac{\left(-\gamma \cdot z\right)}{L_h}} = 0 \qquad K_{zt} := \left(1 + K_1 \cdot K_2 \cdot K_3\right)^2 = 1$$

G:= 0.85 Gust Effect Factor (ASCE 7-16 Sect. 26.11.1)

Building is an Enclosed Building as per ASCE 7-16 Sect. 26.12

Velocity Pressure Exposure Coefficient (Table 26.10-1):

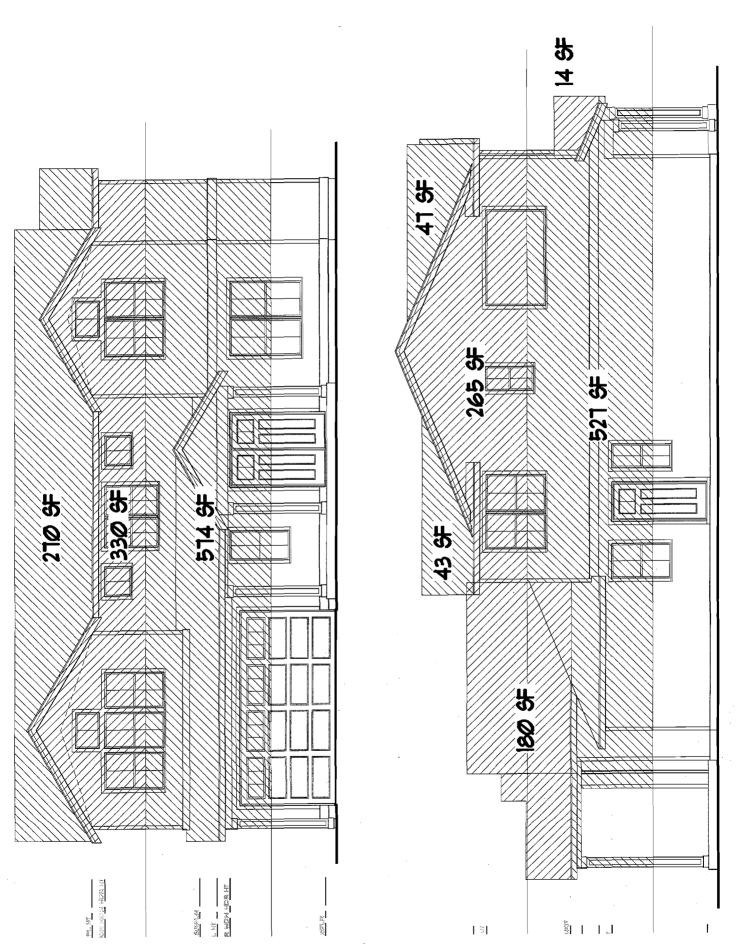
$$z_g \coloneqq 900 \text{ft} \qquad \alpha \coloneqq 9.5 \qquad \text{(per ASCE 7-16 Table 26.11-1 based on Exposure Category)} \\ z_g = 1200 \text{ft}, \ \alpha = 7.0 \text{ (Exp B)}, \ z_g = 900 \text{ft}, \ \alpha = 9.5 \text{ (Exp C)}, \ z_g = 700 \text{ft}, \ \alpha = 11.5 \text{ (Exp D)} \\ z_1 \coloneqq 19 \text{ft} \qquad z_2 \coloneqq 15 \text{ft} \qquad \text{Height from ground to level x (z_{min} = 15 \text{ft})}$$

$$K_{z1} := 2.01 \left(\frac{z_1}{z_g}\right)^{\left(\frac{2}{\alpha}\right)} = 0.89 \qquad K_{z2} := 2.01 \left(\frac{z_2}{z_g}\right)^{\left(\frac{2}{\alpha}\right)} = 0.85 \qquad K_h := 2.01 \left(\frac{h}{z_g}\right)^{\left(\frac{2}{\alpha}\right)} = 0.94$$

External Pressure Coefficients w/ Roof Pitch = 5/12 (23 degrees) Front to Back & 5/12 (23 degrees) Side to Side Taken from Figure 27.3-1

Front to Back: Side to Side:

$$L_{fb} := 54 \text{ft}$$
 $B_{fb} := 54 \text{ft}$ $\frac{L_{fb}}{B_{fb}} = 1$ $\frac{h}{L_{fb}} = 0.44$ $L_{ss} := 54 \text{ft}$ $B_{ss} := 54 \text{ft}$ $\frac{L_{ss}}{B_{ss}} = 1$ $\frac{h}{L_{ss}} = 0.44$


$$C_{pf1} \coloneqq .8$$
 Windward Wall $C_{ps1} \coloneqq .8$ Windward Wall

$$C_{pf2} \coloneqq 0.14$$
 Windward Roof $C_{ps2} \coloneqq 0.14$ Windward Roof

$$C_{pf3} := -.6$$
 Leeward Roof $C_{ps3} := -.6$ Leeward Roof

$$C_{pf4} \coloneqq -.5$$
 Leeward Wall $C_{ps4} \coloneqq -.5$ Leeward Wall

Velocity Pressure (q₇) Evaluated at Height (z) (Equation 26.10-1)

$$q_{z1} := 0.00256 \cdot K_{z1} \cdot K_{zt} \cdot K_{d} \cdot K_{e} \cdot V^{2} = 19.41 \quad q_{z2} := 0.00256 \cdot K_{z2} \cdot K_{zt} \cdot K_{d} \cdot K_{e} V^{2} = 18.47 \qquad q_{h} := 0.00256 \cdot K_{h} \cdot K_{zt} \cdot K_{d} \cdot K_{e} V^{2} = 20.39$$

Design Wind Pressures $p = qGC_p - q_i(GC_{pi})$ (Equation 27.3-1) where q_i will conservatively be taken equal to q_p

Windward Wall Both Directions
$$p_{ww1} := q_{z1} \cdot G \cdot C_{nf1} \cdot psf = 13.2 \text{ ft}^{-2} \cdot lb$$

$$p_{ww1} := \ q_{z1} \cdot G \cdot C_{pf1} \cdot psf = 13.2 \ \text{ft}^{-2} \cdot lb \\ p_{ww2} := \ q_{z2} \cdot G \cdot C_{pf1} \cdot psf = 12.56 \ \text{ft}^{-2} \cdot lb$$

Windward Roof Front to Back
$$p_{wr1} := q_h \cdot G \cdot C_{pf2} \cdot psf = 2.43 \text{ ft}^{-2} \cdot lb$$

Leeward Roof Front to Back
$$p_{lr1} := q_h \cdot G \cdot C_{pf3} \cdot psf = -10.4 \text{ ft}^{-2} \cdot lb$$

Leeward Wall Front to Back
$$p_{lw1} := q_h \cdot G \cdot C_{pf4} \cdot psf = -8.67 \text{ ft}^{-2} \cdot lb$$

$$p_{lw1} = q_h \cdot G \cdot C_{pf4} \cdot ps1 = -6.07 \cdot H$$

Windward Roof Side to Side
$$p_{wr2} := q_h \cdot G \cdot C_{ps2} \cdot psf = 2.43 \text{ ft}^{-2} \cdot \text{lb}$$

Leeward Roof Side to Side
$$p_{lr2} \coloneqq q_h \cdot G \cdot C_{ps3} \cdot psf = -10.4 \text{ ft}^{-2} \cdot lb$$

Leeward Wall Side to Side
$$p_{lw2} \coloneqq q_h \cdot G \cdot C_{ps4} \cdot psf = -8.67 \, ft^{-2} \cdot lb$$

The Internal Pressures on Windward and Leeward Walls & Roofs will offset each other for the lateral design of the overall building and will therefore be ignored for this application.

Check net pressure not less than 16psf at walls & 8psf at roof over projected vertical plane per ASCE 7-16 Sec. 27.1-5:

$$p_{wr1} - p_{lr1} = 12.83 \text{ ft}^{-2} \cdot \text{lb}$$
 $p_{ww1} - p_{lw1} = 21.87 \text{ ft}^{-2} \cdot \text{lb}$ $p_{ww2} - p_{lw1} = 21.23 \text{ ft}^{-2} \cdot \text{lb}$

$$p_{yyy2} - p_{yy1} = 21.23 \, \text{ft}^{-2} \cdot \text{lb}$$

$$p_{wr2} - p_{lr2} = 12.83 \, ft^{-2} \cdot lb$$

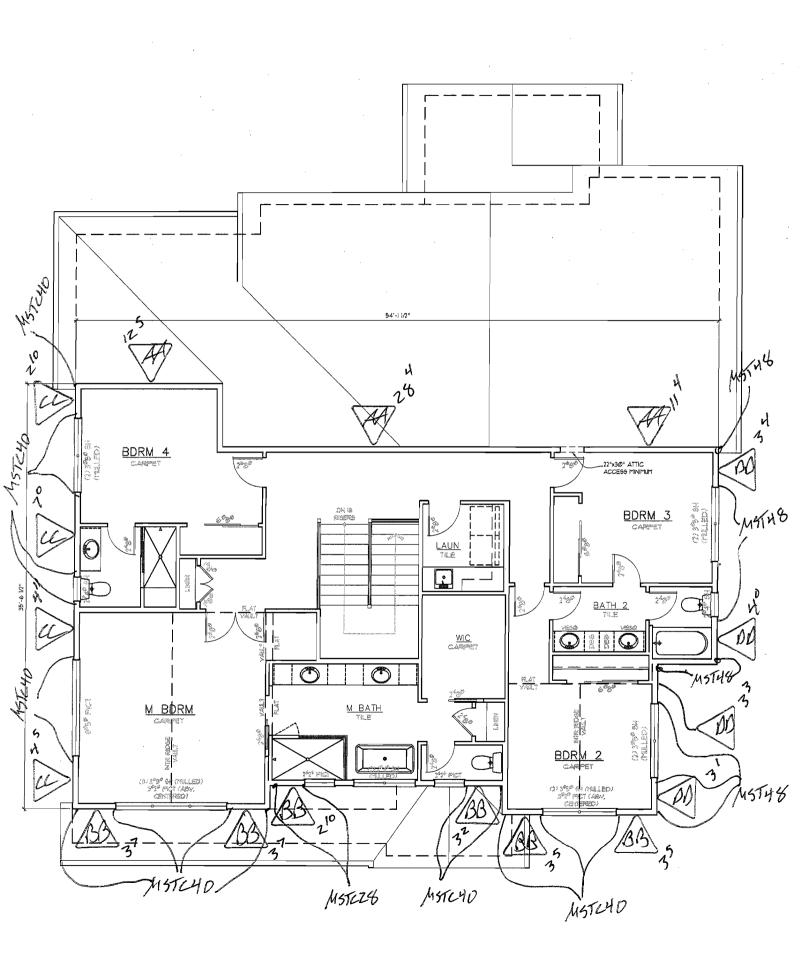
$$p_{ww1} - p_{lw2} = 21.87 \, \text{ft}^{-2} \cdot lb$$

$$p_{ww2} - p_{lw2} = 21.23 \, ft^{-2} \cdot lb$$

Wind Pressure at Upper Roof (Front to Back):

$$V_{1W} := (p_{wr1} - p_{lr1})270 ft^2 + (p_{ww1} - p_{lw1}) \cdot 330 \cdot ft^2 = 10680 lb$$

Wind Pressure at Main Floor (Front to Back):


$$V_{2W} := (p_{wr1} - p_{lr1})0 ft^2 + (p_{ww2} - p_{lw1}).574 ft^2 = 12184.74 lb$$

Wind Pressure at Upper Roof (Side to Side):

$$V_{3W} := (p_{wr2} - p_{lr2}) \cdot 90 ft^2 + (p_{ww1} - p_{lw2}) \cdot 265 ft^2 = 6949.65 lb$$

Wind Pressure at Main Floor (Side to Side):

$$V_{4W} := (p_{wr2} - p_{lr2}) \cdot 194 ft^2 + (p_{ww2} - p_{lw2}) \cdot 527 ft^2 = 13675.5 lb$$

PROJECT:80xx SE 20th Street

Phone: 253-858-3248 Email: myengineer@centurytel.net

WALL AA:

Story Shear due to Wind:

$$V_{3W} = 6949.65 lb$$

Story Shear due to Seismic:

$$F_1 = 8192.17 \, lb$$

Bldg Width in direction of Load: $L_t = 36 \cdot ft$

$$L_t := 36 \cdot \text{ft}$$

Distance between shear walls:

$$L_1 := 36 \cdot \text{ft}$$

Shear Wall Length: Laa_w := (12.42 + 28.33 + 11.33)ft = 52.08 ft

Laa_s :=
$$(12.42 + 28.33 + 11.33)$$
ft = 52.08 ft

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10.0}\right) \cdot 100$ % = 100

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Max Opening Height = 0ft-0in, Therefore
$$C_0 := 1.00$$
 per AF&PA SDPWS Table 4.3.3.5

Wind Force: vaa := $\frac{L_t}{2}$

Seismic Force:
$$\rho := 1.0$$
 $E_{aa} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{Laa_s}$

$$vaa = 40.03 \, ft^{-1} \cdot lb$$

$$vaa = 40.03 \text{ ft}^{-1} \cdot lb$$
 $\frac{vaa}{C_0} = 40.03 \text{ ft}^{-1} \cdot lb$

$$E_{aa} = 55.05 \, \text{ft}^{-1} \cdot \text{lb}$$

$$E_{aa} = 55.05 \,\text{ft}^{-1} \cdot \text{lb}$$
 $\frac{E_{aa}}{C_0} = 55.05 \,\text{ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 339 plf Seismic Capacity = 242 plf

Dead Load Resisting Overturning:

$$L_{aa} := 11.33 \cdot ft$$

$$L_{aa} := 11.33 \cdot ft$$
 Plate Height: Pt := 9 · ft

$$W_{aa} := (15 \cdot psf) \cdot 2 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

DLRaa :=
$$\frac{W_{aa} \cdot L_{aa}}{2}$$
 DLRaa = 679.8 lb

Chord Force:

$$CFaa_{w} := \frac{vaa \cdot L_{aa} \cdot Pt}{C_{o} \cdot L_{aa}}$$

$$CFaa_{w} = 360.29 \text{ lb}$$

$$CFaa_w = 360.29 \, lb$$

$$CFaa_s := \frac{E_{aa} \cdot L_{aa} \cdot Pt}{C \cdot L}$$

$$CFaa_s = 495.49 \text{ lb}$$

$$CFaa_s = 495.49 lb$$

Holdown Force:

$$HDFaa_w := CFaa_w - 0.6 \cdot DLRaa = -47.59 lb$$

$$HDFaa_{s} := CFaa_{s} - (0.6 - 0.14S_{DS})DLRaa = 175.11 lb$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{N} := 102 \cdot lb \quad C_{D} := 1.6$$

$$B_{p} := \frac{\left(Z_{N} \cdot C_{D} \cdot C_{o}\right)}{vaa} = 4.08 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{aa}} = 2.96 \text{ ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_s := 860 \cdot lb$$
 $C_D := 1.6$ $Z_B := A_s \cdot C_D$ $Z_B = 1376 \, lb$

$$C_{D_i} = 1.6$$

$$Z_B := A_s \cdot C_D$$

$$Z_{\rm B} = 1376 \, \rm lb$$

As :=
$$\frac{(Z_B \cdot C_o)}{vaa} = 34.37 \,\text{ft}$$
 $\frac{(Z_B \cdot C_o)}{E_{co}} = 24.99 \,\text{ft}$

$$\frac{\left(Z_{B}\cdot C_{o}\right)}{E_{co}} = 24.991$$

3206 50th Street Ct NW, Ste 210-B Gig Harbor, WA 98335

PROJECT:80xx SE 20th Street

Phone: 253-858-3248

Email: myengineer@centurytel.net

WALL BB:

Story Shear due to Wind:

$$V_{3W} = 6949.65 lb$$

Story Shear due to Seismic:

$$F_1 = 8192.17 \text{ lb}$$

$$L_{t} := 36 \cdot \text{ft}$$

Distance between shear walls:

$$L_1 := 36 \cdot ft$$

Shear Wall Length:

$$Lbb_w := (2 \cdot 3.58 + 2.83 + 3.17 + 2 \cdot 3.42)ft = 20 ft$$

Shear Wall Length:
$$\text{Lbb}_{\text{w}} \coloneqq (2 \cdot 3.58 + 2.83 + 3.17 + 2 \cdot 3.42) \text{ft} = 20 \, \text{ft}$$

$$\text{Lbb}_{\text{s}} \coloneqq \left[2 \cdot 3.58 \left(\frac{7.17}{9} \right) + 2.83 \left(\frac{5.67}{9} \right) + 3.17 \left(\frac{6.33}{9} \right) + 2 \cdot 3.42 \left(\frac{6.83}{9} \right) \right] \text{ft} = 14.91 \, \text{ft}$$

Percent full height sheathing: $\% = \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100 Max Opening Height = 0ft-0in, Therefore C: 1.00 per AF&PA SDPWS Table 4.3.3.5

$$\mbox{Wind Force: } \mbox{ } \mbox{vbb} := \frac{\frac{0.6 V_{3W}}{L_t} \cdot \frac{L_1}{2}}{L b b_w}$$

Seismic Force:
$$\rho:=1.0 \qquad \qquad E_{bb}:=\frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{Lbb_s}$$

$$vbb = 104.24 \text{ ft}^{-1} \cdot lb$$
 $\frac{vbb}{C_0} = 104.24 \text{ ft}^{-1} \cdot lb$

$$E_{bb} = 192.34 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_{bb}}{C_0} = 192.34 \text{ ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C. Wind Capacity = 339 plf Seismic Capacity = 242 plf

Dead Load Resisting Overturning:
$$L_{bb} := 2.83 \cdot \text{ft}$$
 Plate Height: $Pt := 9 \cdot \text{ft}$

$$W_{bb} := (15 \cdot psf) \cdot 15 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

$$DLRbb := \frac{W_{bb} \cdot L_{bb}}{2}$$

$$DLRbb = 445.72 lb$$

Chord Force:

$$CFbb_w := \frac{vbb \cdot L_{bb} \cdot Pt}{C_0 \cdot L_{bb}}$$

$$CFbb_w = 938.21b$$

$$CFbb_w = 938.2 lb$$

$$CFbb_s := \frac{E_{bb} \cdot L_{bb} \cdot Pt}{C_o \cdot L_{bb}}$$

$$CFbb_s = 1731.04 \text{ lb}$$

$$CFbb_s = 1731.04 lb$$

Holdown Force:

$$HDFbb_w := CFbb_w - 0.6 \cdot DLRbb = 670.77 lb$$

$$HDFbb_s := CFbb_s - (0.6 - 0.14S_{DS}) \cdot DLRbb = 1520.98 lb$$

Simpson MSTC40 to wall or MSTC28 at flush beam

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$B_{DN} := \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{vbb} = 1.57 \text{ ft} \qquad \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{E_{bb}} = 0.85 \text{ ft}$$

16d @ 8" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{S} := 860 \cdot lb \qquad C_{D} := 1.6 \qquad Z_{B} := A_{S} \cdot C_{D} \qquad Z_{B} = 1376 \, lb$$

$$A_{S} := \frac{\left(Z_{B} \cdot C_{o}\right)}{vbb} = 13.2 \, ft \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{D}} = 7.15 \, ft$$

3206 50th Street Ct NW, Ste 210-B Gig Harbor, WA 98335

PROJECT:80xx SE 20th Street

Phone: 253-858-3248

Email: myengineer@centurytel.net

WALL CC:

Story Shear due to Wind:

$$V_{1W} = 10680 \, lb$$

Story Shear due to Seismic:

$$F_1 = 8192.17 \text{ lb}$$

Bldg Width in direction of Load:

$$L_{t} = 54 \cdot \text{ft}$$

Distance between shear walls:

$$L_{\rm ab} := 54 \cdot \text{ft}$$

Shear Wall Length:

$$Lcc_w := (4.42 + 4.92 + 7 + 2.83)$$
ft = 19.17 ft

Lcc_s :=
$$\left[4.42\left(\frac{8.83}{9}\right) + 4.92 + 7 + 2.83\left(\frac{5.67}{9}\right)\right]$$
ft = 18.04 ft

Percent full height sheathing:

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Max Opening Height = Oft-Oin, Therefore Control 1.00 per AF&PA SDPWS Table 4.3.3.5

Wind Force: $vcc := \frac{0.6V_{1W}}{L_t} \cdot \frac{L_1}{2}$

Seismic Force:
$$\rho:=1.0 \qquad \qquad E_{cc}:=\frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{Lcc_s}$$

$$vcc = 167.14 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{vcc}{C_0} = 167.14 \text{ ft}^{-1} \cdot \text{lb}$

$$E_{cc} = 158.94 \,\text{ft}^{-1} \cdot \text{lb}$$
 $\frac{E_{cc}}{C_{cs}} = 158.94 \,\text{ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 339 plf Seismic Capacity = 242 plf

Dead Load Resisting Overturning:

$$L_{cc} := 2.83 \cdot ft$$
 Plate Height: $Pt := 9 \cdot ft$

$$W_{cc} := (15 \cdot psf) \cdot 7 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

DLRcc :=
$$\frac{W_{cc} \cdot L_{cc}}{2}$$
 DLRcc = 275.93 lb

$$DLRcc = 275.93 lb$$

Chord Force:

$$CFcc_w := \frac{vcc \cdot L_{cc} \cdot Pt}{C_o \cdot L_{cc}}$$

$$CFcc_w = 1504.23 \text{ lb}$$

$$CFcc_{w} = 1504.23 lb$$

$$CFcc_s := \frac{E_{cc} \cdot L_{cc} \cdot Pt}{C_c \cdot L_{cc}}$$

$$CFcc_s = 1430.5 \text{ lb}$$

$$CFcc_s = 1430.5 lb$$

Holdown Force:

$$HDFcc_w := CFcc_w - 0.6DLRcc = 1338.67 lb$$

$$HDFcc_s := CFcc_s - (0.6 - 0.14S_{DS}) \cdot DLRcc = 1300.46 lb$$

Simpson MSTC40 to wall or MSTC28 at flush beam

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$B_{NN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vcc} = 0.98 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{cc}} = 1.03 \text{ ft}$$

16d @ 12" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{\text{S}} := 860 \cdot \text{lb}$$
 $C_{\text{D}} := 1.6$ $Z_{\text{B}} := A_{\text{S}} \cdot C_{\text{D}}$ $Z_{\text{B}} = 1376 \, \text{lb}$

As:
$$\frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{\text{vcc}} = 8.23 \text{ ft}$$
 $\frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{E_{\text{cc}}} = 8.66 \text{ ft}$

WALL DD:

Story Shear due to Wind:

$$V_{1W} = 10680 \, lb$$

Story Shear due to Seismic:
$$F_1 = 8192.17 \text{ lb}$$

Bldg Width in direction of Load:

$$L_{\text{AAA}} = 54 \cdot \text{ft}$$

Distance between shear walls:

Shear Wall Length:

$$Ldd_w := (3.33 + 4 + 3.25 + 3.08) ft = 13.66 ft$$

$$Ldd_{s} := \left[3.33 \left(\frac{6.67}{9}\right) + 4\left(\frac{8}{9}\right) + 3.25\left(\frac{6.5}{9}\right) + 3.08\left(\frac{6.17}{9}\right)\right] ft = 10.48 ft$$

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$

$$\% = \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Max Opening Height = Oft-Oin, Therefore Control 1.00 per AF&PA SDPWS Table 4.3.3.5

Wind Force: $vdd := \frac{L_t}{L_t} \frac{2}{2}$

Seismic Force:
$$\rho := 1.0$$
 $E_{dd} := \frac{\rho \cdot \frac{0.7F_1}{L_t} \cdot \frac{L_1}{2}}{Ldd}$

$$vdd = 234.55 \text{ ft}^{-1} \cdot lb$$
 $\frac{vdd}{C} = 234.55 \text{ ft}^{-1} \cdot lb$

$$E_{dd} = 273.54 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_{dd}}{C} = 273.54 \text{ ft}^{-1} \cdot \text{lb}$

P1-4: 7/16" Sheathing w/ 8d nails @ 4" O.C.

Wind Capacity = 495 plf Seismic Capacity = 353 plf

Dead Load Resisting Overturning:

 $L_{dd} := 3.08 \cdot ft$ Plate Height: $P_{dd} := 9 \cdot ft$

$$W_{dd} := (15 \cdot psf) \cdot 2 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

$$DLRdd := \frac{W_{dd} \cdot L_{dd}}{2} \qquad DLRdd = 184.81b$$

Chord Force:

$$CFdd_w := \frac{vdd \cdot L_{dd} \cdot Pt}{C_o \cdot L_{dd}} \qquad CFdd_w = 2110.98 \text{ lb}$$

$$CFdd_{W} = 2110.98 lb$$

$$CFdd_s := \frac{E_{dd} \cdot L_{dd} \cdot Pt}{C_{c} \cdot L_{dd}}$$

$$CFdd_s = 2461.83 \text{ lb}$$

$$CFdd_s = 2461.83 lb$$

Holdown Force:

$$HDFdd_w := CFdd_w - 0.6DLRdd = 2000.1 lb$$

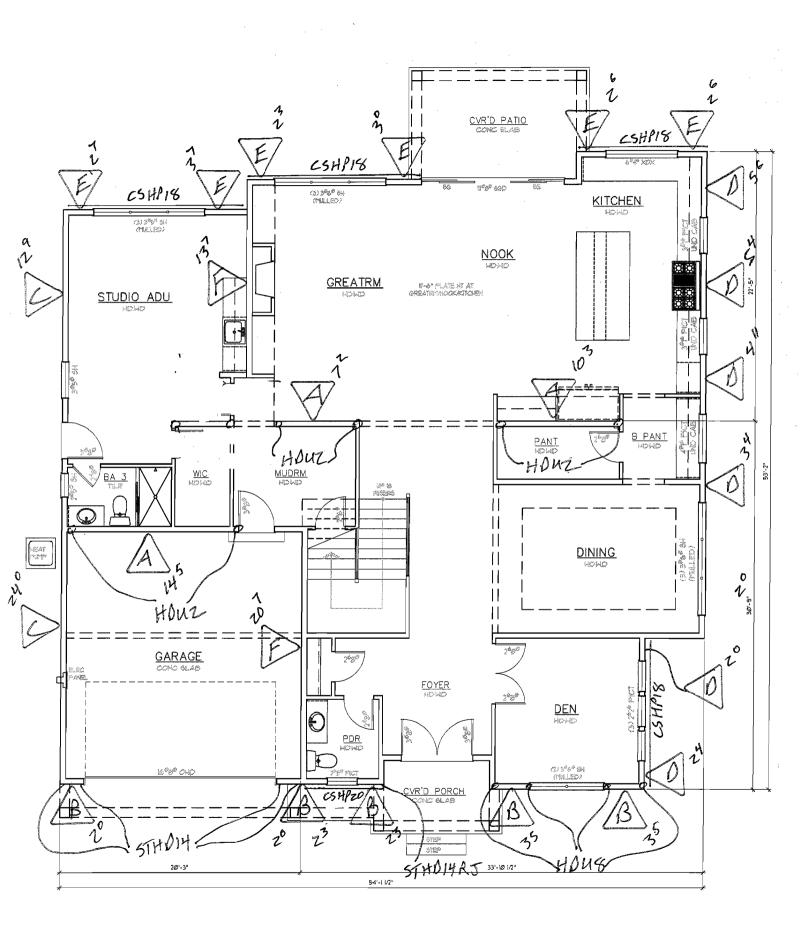
$$HDFdd_s := CFdd_s - (0.6 - 0.14S_{DS})DLRdd = 2374.73 lb$$

Simpson MST48

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$R_{PN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vdd} = 0.7 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{dd}} = 0.6 \text{ ft}$$


16d @ 6" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{S} := 860 \cdot lb \qquad C_{D} := 1.6 \qquad Z_{B} := A_{S} \cdot C_{D} \qquad Z_{B} = 1376 \, lb$$

$$A_{S} := \frac{\left(Z_{B} \cdot C_{o}\right)}{v d d} = 5.87 \, ft \qquad \frac{\left(Z_{B} \cdot C_{o}\right)}{E_{d d}} = 5.03 \, ft$$

5/8" A.B. @ 60" o.c.

WALL A:

Story Shear due to Wind:

$$V_{4W} = 13675.5 lb$$

Story Shear due to Seismic: $F_2 = 8638.17 \text{ lb}$

$$F_2 = 8638.17 \text{ lb}$$

Bldg Width in direction of Load: L_{Mi} = 53·ft

$$L_{t_{\lambda}} := 53 \cdot \text{fi}$$

Distance between shear walls:

$$L_1 := 22.5 \cdot \text{ft}$$
 $L_2 := 30.5 \text{ft}$

$$L_2 := 30.5 ft$$

Shear Wall Length:

$$La_w := (14.42 + 7.17 + 10.25)ft = 31.84ft$$

$$La_s := (14.42 + 7.17 + 10.25)ft = 31.84ft$$

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{g}}\right) \cdot 100$

$$\% = \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100 Max Opening Height = 0ft-0in, Therefore Com:= 1.00 per AF&PA SDPWS Table 4.3.3.5

$$\begin{aligned} & \text{vaa} \cdot \text{Laa}_w + \left(\frac{0.6 \text{V}_{4W}}{\text{L}_t} \cdot \frac{\text{L}_1 + \text{L}_2}{2} \right) \\ & \coloneqq \end{aligned}$$

$$\text{Wind Force: } va:=\frac{vaa \cdot Laa_w + \left(\frac{0.6V_{4W}}{L_t} \cdot \frac{L_1 + L_2}{2}\right)}{La_w} \\ \text{Seismic Force: } \rho:=1.0 \\ E_a:=\frac{E_{aa} \cdot Laa_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1 + L_2}{2}\right)}{La_s} \\ \text{Seismic Force: } \rho:=1.0 \\ \text{Seismic$$

$$va = 194.33 \, ft^{-1} \cdot lb$$

$$va = 194.33 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{va}{C_0} = 194.33 \text{ ft}^{-1} \cdot \text{lb}$

$$E_a = 185.01 \, \text{ft}^{-1} \cdot \text{lb}$$

$$E_a = 185.01 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_a}{C_0} = 185.01 \text{ ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 339 plf Seismic Capacity = 242 plf

Dead Load Resisting Overturning:

$$L_a := 4.92 \cdot ft$$

L_a:= 4.92.ft Plate Height: Pt := 9.ft

$$W_a := (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 5ft$$

$$DLRa := \frac{W_a \cdot L_a}{2}$$

$$DLRa = 344.4 lb$$

Chord Force:

$$CFa_{w} := \frac{va \cdot L_{a} \cdot Pt}{C_{o} \cdot L_{a}}$$

$$CFa_{w} = 1748.99 \text{ lb}$$

$$CFa_{W} = 1748.99 \text{ lb}$$

$$CFa_w + CFaa_w = 2109.28 lb$$

$$CFa_s := \frac{E_a \cdot L_a \cdot Pt}{C_a \cdot L_a}$$

$$CFa_s = 1665.06 \, lb$$

$$CFa_s + CFaa_s = 2160.56 lb$$

Holdown Force:

$$HDFa_w := CFa_w - 0.6 \cdot DLRa = 1542.35 lb$$

$$HDFa_W + HDFaa_W = 1494.76 lb$$

$$HDFa_s := CFa_s - (0.6 - 0.14S_{DS}) \cdot DLRa = 1502.75 lb$$

$$HDFa_s + HDFaa_s = 1677.86 lb$$

Simpson LSTHD8RJ or HDU2 w/ SSTB16 or PAB5 anchor

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{N} := 102 \cdot \text{lb}$$
 $C_{D} := 1.6$

$$R_{R} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{v_{a}} = 0.84 \text{ ft}$$
 $\frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{a}} = 0.88 \text{ ft}$

16d @ 6" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

As:= 860·lb
$$C_D$$
:= 1.6 Z_{B_0} := $A_s \cdot C_D$ Z_B = 1376 lb
As:= $\frac{(Z_B \cdot C_o)}{V_a}$ = 7.08 ft $\frac{(Z_B \cdot C_o)}{E}$ = 7.44 ft

5/8" A.B. @ 60" o.c.

WALL B:

Story Shear due to Wind:

$$V_{4W} = 13675.5 lb$$

Story Shear due to Seismic:

 $F_2 = 8638.17 \text{ lb}$

Bldg Width in direction of Load:

$$L_{th} = 53 \cdot ft$$

Distance between shear walls:

$$L_{\rm h} = 31 \cdot f$$

Shear Wall Length: $Lb_w := (2 \cdot 2 + 2 \cdot 2.25 + 2 \cdot 3.42) ft = 15.34 ft$

$$h \leftarrow (2.2 \pm 2.2.25 \pm 2.3.42)$$

$$Lb_{s} := \left[2.2 + 2.2.25 + 2.3.42 \left(\frac{6.83}{9}\right)\right] \text{ft} = 13.69 \text{ ft}$$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$ % = 100 Max Opening Height = 0ft-0in, Therefore % := 1.00 per AF&PA SDPWS Table 4 3 3 5

$$E_b := \frac{E_{bb} \cdot Lbb_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lb}$$

$$vb = 292.34 \, ft^{-1} \cdot lt$$

$$vb = 292.34 \text{ ft}^{-1} \cdot lb$$
 $\frac{vb}{C_b} = 292.34 \text{ ft}^{-1} \cdot lb$ $E_b = 338.6 \text{ ft}^{-1} \cdot lb$ $\frac{E_b}{C} = 338.6 \text{ ft}^{-1} \cdot lb$

$$E_b = 338.6 \, \text{ft}^{-1} \cdot \text{lb}$$

$$\frac{E_b}{C_a} = 338.6 \, \text{ft}^{-1} \cdot \text{lb}$$

P1-4: 7/16" Sheathing w/ 8d nails @ 4" O.C.

Wind Capacity = 495 plf Seismic Capacity = 353 plf

See APA Technical Topic TT-100 "A Portal Frame with Hold Downs for Engineered Applications" (Emphasis Added) Restraint Panel Height = 10ft Maximum

Restraint Panel Width = 2ft-0in Minimum

Allowable Shear per Panel = 1046 lbs Seismic & 1465 lbs Wind

Shear per Panel:

$$V_{s1} := (2 \text{ft} \cdot E_b) = 677.19 \text{ lb}$$

O.K.

 $V_{s2} := (2 \text{ft·vb}) = 584.69 \text{ lb}$ O.K.

Dead Load Resisting Overturning:

$$L_b := 3.42 \cdot ft$$

 $L_b := 3.42 \cdot ft$ Plate Height: $Pt := 10 \cdot ft$

$$W_b := (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 7ft$$

$$DLRb := \frac{W_b \cdot L_b}{2}$$

$$DLRb = 290.7 lb$$

Chord Force:

$$CFb_{w} := \frac{vb \cdot L_{b} \cdot Pt}{C_{o} \cdot L_{b}}$$

$$CFb_{w} = 2923.44 \text{ lb}$$

$$CFb_{w} = 2923.44 \text{ lb}$$

$$CFb_{w} + CFbb_{w} = 3861.64 lb$$

$$CFb_s := \frac{E_b \cdot L_b \cdot Pt}{C_b \cdot L_b}$$

$$CFb_s = 3385.95 \text{ lb}$$

$$CFb_s = 3385.95 \text{ lb}$$

$$CFb_s + CFbb_s = 51171b$$

Holdown Force:

$$HDFb_w := CFb_w - 0.6 \cdot DLRb = 2749.02 lb$$

$$HDFb_s := CFb_s - (0.6 - 0.14S_{DS}) \cdot DLRb = 3248.95 lb$$

Simpson STHD14/RJ

$$HDFb_w + HDFbb_w = 3419.79 lb$$

$$HDFb_s + HDFbb_s = 4769.92 lb$$

Simpson HDU8 w/ SB7/8x24 Anchor

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{N} := 102 \cdot \text{lb}$$
 $C_{D} := 1.6$

$$B_{PN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{\text{vb}} = 0.56 \, \text{ft}$$
 $\frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{b}} = 0.48 \, \text{ft}$

16d @ 6" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{s} := 860 \cdot lb$$
 $C_{D} := 1.6$ $Z_{R} := A_{s} \cdot C_{D}$ $Z_{B} = 1376 \, lb$

$$Z_{B_A} := A_S \cdot C_D \qquad Z_B =$$

As:=
$$\frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{\text{vb}} = 4.71 \text{ ft}$$
 $\frac{\left(Z_{\text{B}} \cdot C_{\text{o}}\right)}{E_{\text{b}}} = 4.06 \text{ ft}$

$$\frac{\left(Z_{\rm B} \cdot C_{\rm o}\right)}{E_{\rm b}} = 4.06 \, \rm ft$$

5/8" A.B. @ 48" o.c.

3206 50th Street Ct NW, Ste 210-B Gig Harbor, WA 98335

PROJECT:80xx SE 20th Street

Phone: 253-858-3248

Email: myengineer@centurytel.net

WALL C:

Story Shear due to Wind:

$$V_{2W} = 12184.74 lb$$

Story Shear due to Seismic:

$$F_2 = 8638.17 \, lb$$

Bldg Width in direction of Load: Lat:= 54-ft

$$L_{t} := 54 \cdot \text{ft}$$

Distance between shear walls:

Shear Wall Length:

$$Lc_w := (12.75 + 24)ft = 36.75ft$$

$$Lc_s := (12.75 + 24)ft = 36.75ft$$

$$\% = \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

 $\text{Wind Force: } vc := \frac{vcc \cdot Lcc_w + \left(\frac{0.6V_{2W}}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_w} \\ \text{Seismic Force: } \varrho := 1.0 \\ E_c := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := 1.0 \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seismic Force: } \varrho := \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{Lc_s} \\ \text{Seis$

$$:= \frac{E_{cc} \cdot Lcc_s + \left(\rho \cdot \frac{0.7F_2}{L_t} \cdot \frac{L_1}{2}\right)}{L_2}$$

$$vc = 124.02 \, ft^{-1} \cdot lb$$

$$vc = 124.02 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{vc}{C_0} = 124.02 \text{ ft}^{-1} \cdot \text{lb}$

$$E_c = 108.49 \, \text{ft}^{-1} \cdot \text{lb}$$

$$E_c = 108.49 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_c}{C_c} = 108.49 \text{ ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 339 plf Seismic Capacity = 242 plf

Dead Load Resisting Overturning:

$$L_c := 12.75 \cdot \text{ft}$$
 Plate Height: $Pt := 9 \cdot \text{ft}$

$$W_c := (15 \cdot psf) \cdot 5 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

$$DLRc := \frac{W_c \cdot L_c}{2}$$

$$DLRc = 1051.87 lb$$

Chord Force:

$$CFc_w := \frac{vc \cdot L_c \cdot Pt}{C_o \cdot L_c}$$

$$CFc_w = 1116.21 \text{ lb}$$

$$CFc_{w} = 1116.21 \text{ lb}$$

$$CFc_w + CFcc_w = 2620.44 lb$$

$$CFc_s := \frac{E_c \cdot L_c \cdot Pt}{C \cdot L}$$

$$CFc_s = 976.41 \text{ lb}$$

$$CFc_s = 976.41 \text{ lb}$$

$$CFc_s + CFcc_s = 2406.91 lb$$

Holdown Force:

$$HDFc_w := CFc_w - 0.6 \cdot DLRc = 485.09 lb$$

$$HDFc_s := CFc_s - (0.6 - 0.14S_{DS}) \cdot DLRc = 480.67 lb$$

No Holdown Required

$$HDFc_w + HDFcc_w = 1823.76 lb$$

$$HDFc_s + HDFcc_s = 1781.13 lb$$

Simpson LSTHD8/RJ

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{DN} := 1.6$$

$$B_{NN} := \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{v_c} = 1.32 \text{ ft} \qquad \frac{\left(C_D \cdot Z_N \cdot C_o\right)}{E_c} = 1.5 \text{ ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

WALL D:

Story Shear due to Wind:

 $V_{2W} = 12184.74 \, lb$

Story Shear due to Seismic:

 $F_2 = 8638.17 \, lb$

Bldg Width in direction of Load:

 $L_{t} := 54 \cdot ft$

Distance between shear walls:

 $L_1 = 34 \cdot ft$

Shear Wall Length:
$$Ld_w := (5.5 + 5.33 + 4.92 + 3.33 + 2 + 2.33)$$
ft = 23.41 ft

$$Ld_s := \left[5.5 \left(\frac{11}{11.5}\right) + 5.33 \left(\frac{10.67}{11.5}\right) + 4.92 \left(\frac{9.83}{11.5}\right) + 3.33 \left(\frac{6.67}{9}\right) + 2 + 2.33\right] \text{ft} = 21.21 \text{ ft}$$

Percent full height sheathing: $\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

% = 100 Max Opening Height = 0ft-0in, Therefore $\underset{\text{per AF&PA SDPWS Table 4.3.3.5}}{\text{Max Opening Height = 0ft-0in, Therefore }} = 1.00$

$$\text{Wind Force:} \quad vd := \frac{vdd \cdot Ldd_w + \left(\frac{0.6V_{2W}}{L_t} \cdot \frac{L_1}{2}\right)}{Ld_w}$$

Seismic Force:
$$\rho := 1.0 \qquad E_d := \frac{E_{dd} \cdot L dd_s + \left(\rho \cdot \frac{0.7 F_2}{L_t} \cdot \frac{L_1}{2}\right)}{L d_s}$$

$$vd = 235.18 \, ft^{-1} \cdot lb$$

$$vd = 235.18 \text{ ft}^{-1} \cdot lb$$
 $\frac{vd}{C_0} = 235.18 \text{ ft}^{-1} \cdot lb$

$$E_d = 224.94 \, ft^{-1} \cdot lb$$

$$E_d = 224.94 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{E_d}{C_0} = 224.94 \text{ ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 339 plf Seismic Capacity = 242 plf

Dead Load Resisting Overturning:

 $L_d := 3.33 \cdot ft$ Plate Height: $P_t := 9 \cdot ft$

$$W_d := (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 1ft$$

$$DLRd := \frac{W_d \cdot L_d}{2}$$

$$DLRd = 166.5 lb$$

Chord Force:

$$CFd_w := \frac{vd \cdot L_d \cdot Pt}{C_o \cdot L_d}$$

$$CFd_W = 2116.62 lb$$

$$CFd_w + CFdd_w = 4227.6 lb$$

$$CFd_s := \frac{E_{d'}L_{d'}Pt}{C_{c'}L_{d'}}$$

$$CFd_{s} = 2024.45 lb$$

 $CFd_s + CFdd_s = 4486.27 lb$

Holdown Force:

$$HDFd_w := CFd_w - 0.6DLRd = 2016.72 lb$$

$$HDFd_s := CFd_s - (0.6 - 0.14S_{DS}) \cdot DLRd = 1945.98 lb$$

Simpson LSTHD8RJ

$$HDFd_w + HDFdd_w = 4016.82 lb$$

$$HDFd_s + HDFdd_s = 4320.71 lb$$

Simpson HDU5 w/ SB5/8x24 anchor

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot lb \quad C_{D} := 1.6$$

$$B_{RN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vd} = 0.69 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{d}} = 0.73 \text{ ft}$$

16d @ 8" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_{s} := 860 \cdot lb$$
 $C_{D} := 1.6$ $Z_{B} := A_{s} \cdot C_{D}$ $Z_{B} = 1376 \, lb$

$$Z_{\mathsf{P}} := A_{\mathsf{s}} \cdot \mathsf{C}$$

$$Z_{\rm B} = 1376 \, \rm lb$$

As: =
$$\frac{(Z_B \cdot C_o)}{\text{vd}} = 5.85 \,\text{ft}$$
 $\frac{(Z_B \cdot C_o)}{E_d} = 6.12 \,\text{ft}$

$$\frac{\left(Z_{\rm B}\cdot C_{\rm o}\right)}{E_{\rm d}}=6.12\,{\rm f}$$

WALL E:

Story Shear due to Wind:

$$V_{4W} = 13675.5 \text{ lb}$$

Story Shear due to Seismic: $F_2 = 8638.17 lb$

$$F_2 = 8638.17 \text{ lb}$$

Bldg Width in direction of Load: Late: 54 ft

$$L_t := 54 \cdot ft$$

Distance between shear walls:

$$L_{\rm L} = 23 \cdot {\rm ft}$$

Shear Wall Length:

$$Le_w := (2.58 + 3.58 + 2.25 + 3 + 2.25)ft = 16.41 ft$$

Shear Wall Length:

$$Le_{w} := (2.58 + 3.58 + 2.25 + 3 + 2.25) \text{ ft} = 16.41 \text{ ft} \qquad Le_{s} := \left[2.58 + 3.58 + 2.25 \left(\frac{4.5}{8}\right) + 3 \left(\frac{6}{8}\right) + 2.2.5 \left(\frac{5}{6.5}\right)\right] \text{ ft} = 13.52 \text{ ft}$$

Percent full height sheathing: $\% = \left(\frac{10 \cdot \text{ft}}{10.9}\right) \cdot 100$ % = 100

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Max Opening Height = 0ft-0in, Therefore $\mathcal{K}_{\text{AA}} = 1.00$ per AF&PA SDPWS Table 4.3.3.5

$$\mbox{Wind Force:} \quad \mbox{ve} := \frac{\frac{0.6 V_{4W}}{L_t} \cdot \frac{L_1}{2}}{Le_w}$$

Seismic Force:
$$\rho:=1.0 \qquad E_e:=\frac{\rho \cdot \frac{0.7 F_2}{L_t} \cdot \frac{L_1}{2}}{Le_s}$$

$$ve = 106.49 \text{ ft}^{-1} \cdot lb$$
 $\frac{ve}{C} = 106.49 \text{ ft}^{-1} \cdot lb$

$$E_e = 95.23 \, \text{ft}^{-1} \cdot \text{lb}$$

$$E_e = 95.23 \,\text{ft}^{-1} \cdot \text{lb}$$
 $\frac{E_e}{C_o} = 95.23 \,\text{ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 339 plf Seismic Capacity = 242 plf

Dead Load Resisting Overturning:

$$L_e := 11 \cdot ft$$

Plate Height: Pt.:= 11.5.ft

$$W_e := (15 \cdot psf) \cdot 2 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 0ft$$

DLRe :=
$$\frac{W_e \cdot L_e}{2}$$
 DLRe = 797.5 lb

Chord Force:

$$CFe_{w} := \frac{\text{ve-}5\text{ft-}Pt}{C_{0} \cdot L_{e}}$$

$$CFe_{w} = 556.63 \text{ lb}$$

$$CFe_{w} = 556.63 \, lb$$

$$CFe_s := \frac{E_e \cdot 5ft \cdot Pt}{C_e \cdot L_e}$$

$$CFe_s = 497.81 \text{ lb}$$

$$CFe_s = 497.81 lb$$

Holdown Force:

$$HDFe_w := CFe_w - 0.6 \cdot DLRe = 78.13 lb$$

$$HDFe_s := CFe_s - (0.6 - 0.14S_{DS}) \cdot DLRe = 121.96 lb$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{NN} := 102 \cdot \text{lb} \quad C_{DN} := 1.6$$

$$E_{NN} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{\text{ve}} = 1.53 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{e}} = 1.71 \text{ ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_s$$
:= 860·lb C_D := 1.6 Z_B := A_s · C_D Z_B = 1376 lb

As:=
$$\frac{(Z_B \cdot C_o)}{ve} = 12.92 \,\text{ft}$$
 $\frac{(Z_B \cdot C_o)}{E_e} = 14.45 \,\text{ft}$

WALL F:

Story Shear due to Wind:

$$V_{2W} = 12184.74 lb$$

Story Shear due to Seismic:

$$F_2 = 8638.17 \text{ lb}$$

Bldg Width in direction of Load: L₁ = 54⋅ft

$$L_t = 54 \cdot \text{ft}$$

Distance between shear walls:

$$L_{\rm ab} := 20 \cdot \text{ft}$$
 $L_2 := 34 \text{ft}$

$$_{52} := 34 \text{ft}$$

$$L_{\rm h} = 20 \cdot \text{ft}$$

$$L_2 := 34 \text{ft}$$

Shear Wall Length:
$$Lf_w := (13.58 + 20.58)ft = 34.16ft$$

$$Lf_s := (13.58 + 20.58) ft = 34.16 ft$$

Percent full height sheathing: $\% = \left(\frac{10 \cdot \text{ft}}{10.0}\right) \cdot 100$

$$\% := \left(\frac{10 \cdot \text{ft}}{10 \cdot \text{ft}}\right) \cdot 100$$

Max Opening Height = Oft-Oin, Therefore $C_{\text{AAQA}} := 1.00$ per AF&PA SDPWS Table 4.3.3.5

Wind Force: $vf := \frac{\frac{0.0v_{2W}}{L_t} \cdot \frac{L_1 + L_2}{2}}{1 \cdot f}$

Seismic Force:
$$\rho:=1.0 \qquad E_f:=\frac{\rho\cdot \frac{0.7F_2}{L_t}\cdot \frac{L_1+L_2}{2}}{Lf_s}$$

$$vf = 107.01 \, ft^{-1} \cdot lb$$

$$vf = 107.01 \text{ ft}^{-1} \cdot lb$$
 $\frac{vf}{C_0} = 107.01 \text{ ft}^{-1} \cdot lb$

$$E_f = 88.51 \, \text{ft}^{-1} \cdot \text{lb}$$

$$E_f = 88.51 \,\text{ft}^{-1} \cdot \text{lb}$$
 $\frac{E_f}{C_0} = 88.51 \,\text{ft}^{-1} \cdot \text{lb}$

P1-6: 7/16" Sheathing w/ 8d nails @ 6" O.C.

Wind Capacity = 339 plf Seismic Capacity = 242 plf

Dead Load Resisting Overturning:

$$L_f := 13.58 \cdot ft$$
 Plate Height: $Pt := 11.5 \cdot ft$

$$W_f := (15 \cdot psf) \cdot 0 \cdot ft + (10 \cdot psf) \cdot Pt + (10psf) \cdot 1ft$$

$$DLRf := \frac{W_f L_f}{2}$$

$$DLRf = 848.75 lb$$

$$DLRf = 848.75 lb$$

Chord Force:

$$CFf_w := \frac{vf \cdot L_f \cdot Pt}{C_o \cdot L_f}$$

$$CFf_w = 1230.6 \text{ lb}$$

$$CFf_{W} = 1230.6 \, lb$$

$$CFf_s := \frac{E_f \cdot L_f \cdot Pt}{C \cdot L_s}$$

$$CFf_s = 1017.82 \text{ lb}$$

$$CFf_s = 1017.82 lb$$

Holdown Force:

$$HDFf_w := CFf_w - 0.6 \cdot DLRf = 721.35 lb$$

$$HDFf_s := CFf_s - (0.6 - 0.14S_{DS}) \cdot DLRf = 617.81 \text{ lb}$$

No Holdown Required

Base Plate Nail Spacing (2018 NDS Table 12N) 16d Sinker (0.148"x3.25") Nails & 1-1/2" Plate Hem-Fir

$$Z_{N} := 102 \cdot lb \quad C_{D} := 1.6$$

$$B_{N} := \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{vf} = 1.53 \text{ ft} \qquad \frac{\left(C_{D} \cdot Z_{N} \cdot C_{o}\right)}{E_{f}} = 1.84 \text{ ft}$$

16d @ 16" o.c.

Anchor Bolt Spacing (2018 NDS Table 12E) 5/8" Dia. Bolt (6" Embed) & 1-1/2" Plate Hem-Fir

$$A_s$$
:= 860·lb C_D := 1.6 Z_B := A_s · C_D Z_B = 1376 lb

$$C_D := 1.6$$

$$A_s := A_s \cdot C_D$$

$$Z_{\rm R} = 13761$$

As: =
$$\frac{(Z_B \cdot C_o)}{vf}$$
 = 12.86 ft $\frac{(Z_B \cdot C_o)}{E_c}$ = 15.55 ft

$$\frac{\left(Z_{B} \cdot C_{o}\right)}{F_{c}} = 15.55t$$

Email: myengineer@centurytel.net

Diapragm Shear Check:

Gig Harbor, WA 98335

Assume 2x HF Roof Framing, 7/16" Sheathing w/ 8d (0.131" x 2.5") nails, 6" o.c Edge nailing

Unblocked Diapraghm Case 1 Wind Capacity = 300 plf & Seismic Capacity = 214 plf

Unblocked Diapraghm Case 2-6 Wind Capacity = 221 plf & Seismic Capacity = 158 plf

Wall Lines AA:

$$vaa \cdot \frac{Laa_w}{54ft} = 38.61 \text{ ft}^{-1} \cdot lb$$
 $E_{aa} \cdot \frac{Laa_s}{54ft} = 53.1 \text{ ft}^{-1} \cdot lb$

$$E_{aa} \cdot \frac{Laa_s}{54ft} = 53.1 \text{ ft}^{-1} \cdot \text{lb}$$

$$\text{vcc} \cdot \frac{\text{Lcc}_{\text{w}}}{3556 \text{ft}} = 0.9 \,\text{ft}^{-1} \cdot \text{lb}$$
 $E_{\text{cc}} \cdot \frac{\text{Lcc}_{\text{s}}}{35 \text{ft}} = 81.92 \,\text{ft}^{-1} \cdot \text{lb}$

Wall Lines BB:

$$vbb \cdot \frac{Lbb_w}{54ft} = 38.61 \text{ ft}^{-1} \cdot lb$$
 $E_{bb} \cdot \frac{Lbb_s}{54ft} = 53.1 \text{ ft}^{-1} \cdot lb$

$$E_{bb} \cdot \frac{Lbb_s}{54ft} = 53.1 \text{ ft}^{-1} \cdot \text{lb}$$

Wall Lines DD:

$$vdd \cdot \frac{Ldd_w}{310} = 103.35 \text{ ft}^{-1} \cdot lb$$
 $E_{dd} \cdot \frac{Ldd_s}{310} = 92.49 \text{ ft}^{-1} \cdot lb$

$$E_{dd} \cdot \frac{Ldd_s}{31ft} = 92.49 \, ft^{-1} \cdot lb$$

Wall Lines A:

$$\frac{\text{va} \cdot \text{La}_{\text{w}} - \text{vaa} \cdot \text{Laa}_{\text{w}}}{5.13} = 75.98$$

$$\frac{\text{va} \cdot \text{La}_{\text{w}} - \text{vaa} \cdot \text{Laa}_{\text{w}}}{54 \text{ft}} = 75.98 \, \text{ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{a}} \cdot \text{La}_{\text{s}} - \text{E}_{\text{aa}} \cdot \text{Laa}_{\text{s}}}{54 \, \text{ft}} = 55.99 \, \text{ft}^{-1} \cdot \text{lb} \qquad \frac{\text{va} \cdot \text{La}_{\text{w}}}{54 \, \text{ft}} = 114.58 \, \text{ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{a}} \cdot \text{La}_{\text{s}}}{54 \, \text{ft}} = 109.09 \, \text{ft}^{-1} \cdot \text{lb}$$

$$\frac{\text{va-La}_{\text{w}}}{\text{5.10}} = 114.58 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}}{\text{c}}$$

$$\frac{E_a \cdot La_s}{54ft} = 109.09 \, \text{ft}^{-1} \cdot \text{it}$$

Wall Lines B:

$$\frac{\text{vb} \cdot \text{Lb}_{\text{w}}}{54 \text{ft}} = 83.05 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{b}} \cdot \text{Lb}_{\text{s}}}{54 \text{ft}} = 85.85 \text{ ft}^{-1} \cdot \text{lb}$$

$$\frac{E_b \cdot Lb_s}{54ft} = 85.85 \, \text{ft}^{-1} \cdot 18$$

Wall Lines C:

$$\frac{\text{vc} \cdot \text{Lc}_{\text{W}} - \text{vcc} \cdot \text{Lcc}_{\text{W}}}{48 \text{ft}} = 28.$$

$$\frac{\text{vc} \cdot \text{Lc}_{\text{w}} - \text{vcc} \cdot \text{Lcc}_{\text{w}}}{48 \text{ft}} = 28.21 \, \text{ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{c}} \cdot \text{Lc}_{\text{s}} - \text{E}_{\text{cc}} \cdot \text{Lcc}_{\text{s}}}{48 \text{ft}} = 23.33 \, \text{ft}^{-1} \cdot \text{lb} \qquad \frac{\text{vc} \cdot \text{Lc}_{\text{w}}}{48 \text{ft}} = 94.96 \, \text{ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{c}} \cdot \text{Lc}_{\text{s}}}{48 \text{ft}} = 83.06 \, \text{ft}^{-1} \cdot \text{lb}$$

$$\frac{\text{vc} \cdot \text{Lc}_{\text{W}}}{48 \text{ft}} = 94.96 \text{ ft}^{-1} \cdot \text{lb}$$

$$\frac{E_c \cdot Lc_s}{48ft} = 83.06 \, \text{ft}^{-1} \cdot \text{lb}$$

Wall Lines D:

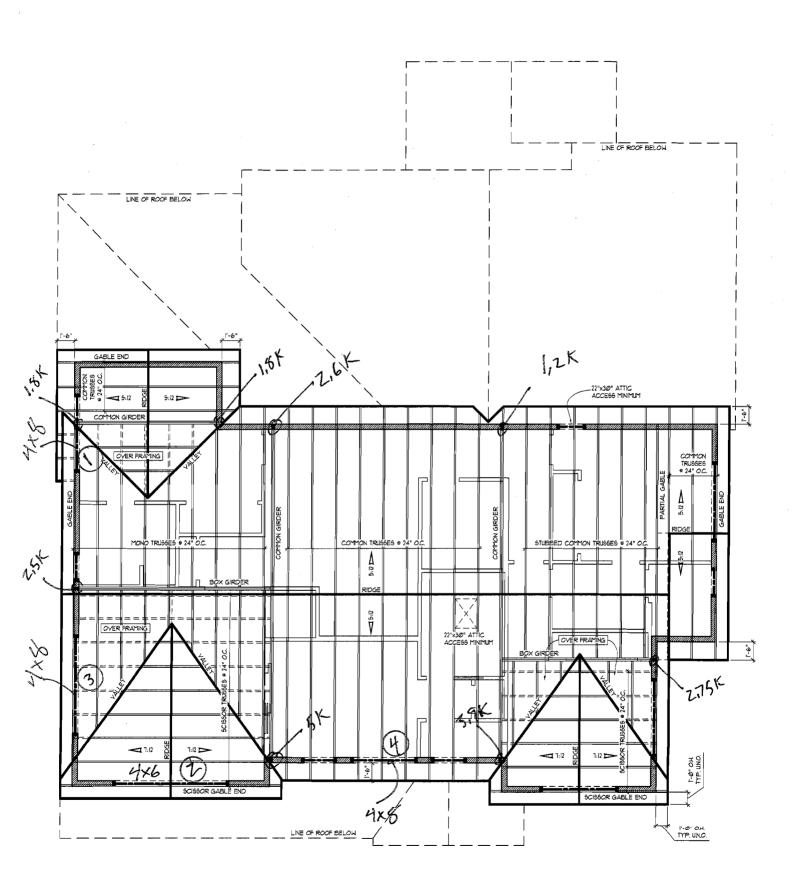
$$\frac{\text{vd} \cdot \text{Ld}_{\text{w}} - \text{vdd} \cdot \text{Ldd}_{\text{w}}}{53 \text{ft}} = 43.43 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{d}} \cdot \text{Ld}_{\text{s}} - \text{E}_{\text{dd}} \cdot \text{Ldd}_{\text{s}}}{53 \text{ft}} = 35.92 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{vd} \cdot \text{Ld}_{\text{w}}}{53 \text{ft}} = 103.88 \text{ ft}^{-1} \cdot \text{lb} \qquad \frac{\text{E}_{\text{d}} \cdot \text{Ld}_{\text{s}}}{53 \text{ft}} = 90.02 \text{ ft}^{-1} \cdot \text{lb}$$

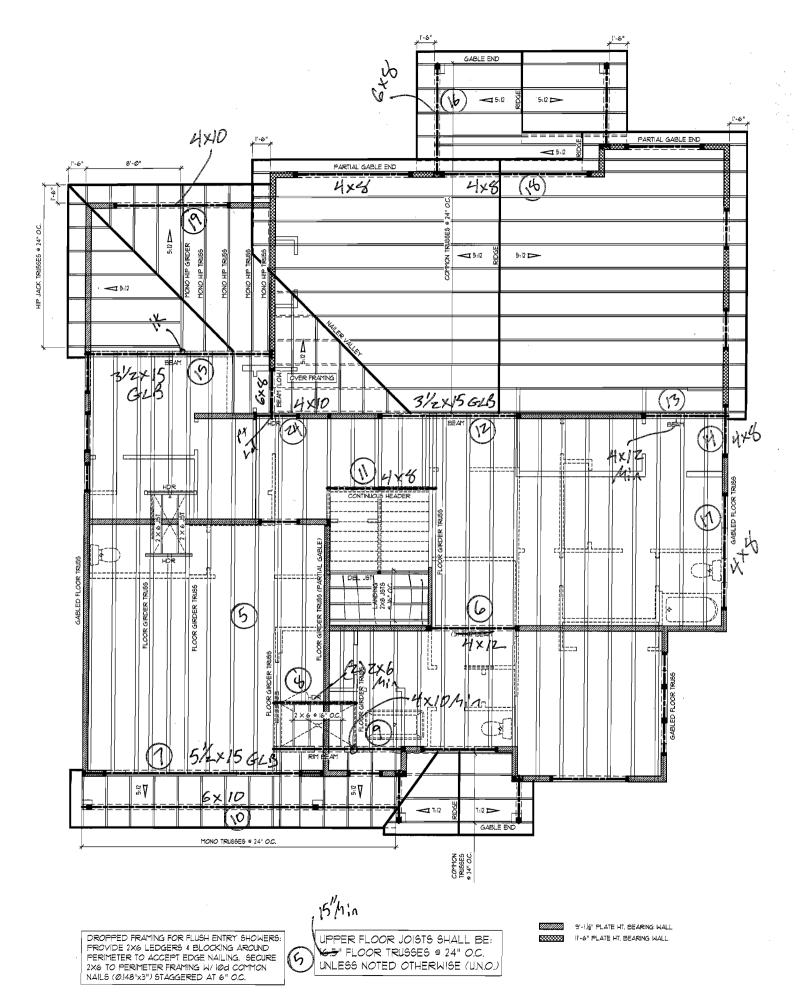
$$\frac{E_d \cdot Ld_s - E_{dd} \cdot Ldd_s}{53 \text{ ft}} = 35.92 \text{ ft}^{-1} \cdot \Gamma$$

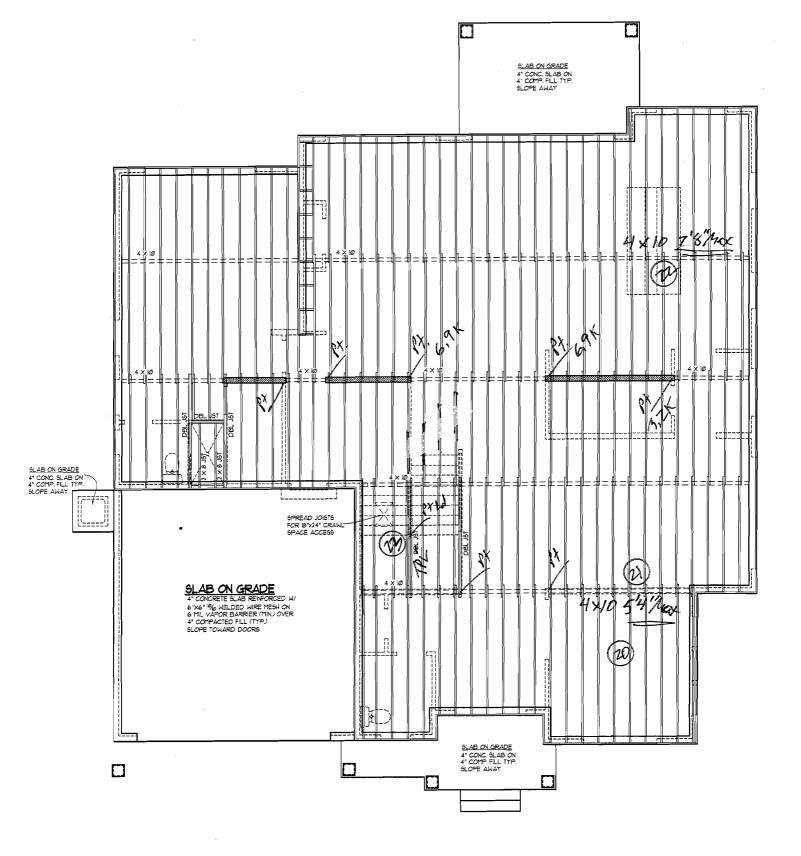
$$\frac{\text{vd} \cdot \text{Ld}_{\text{w}}}{\text{52 ft}} = 103.88 \text{ ft}^{-1} \cdot \text{lb}$$

$$\frac{E_d \cdot Ld_s}{520} = 90.02 \, \text{ft}^{-1} \cdot \text{lb}$$

Wall Line E:

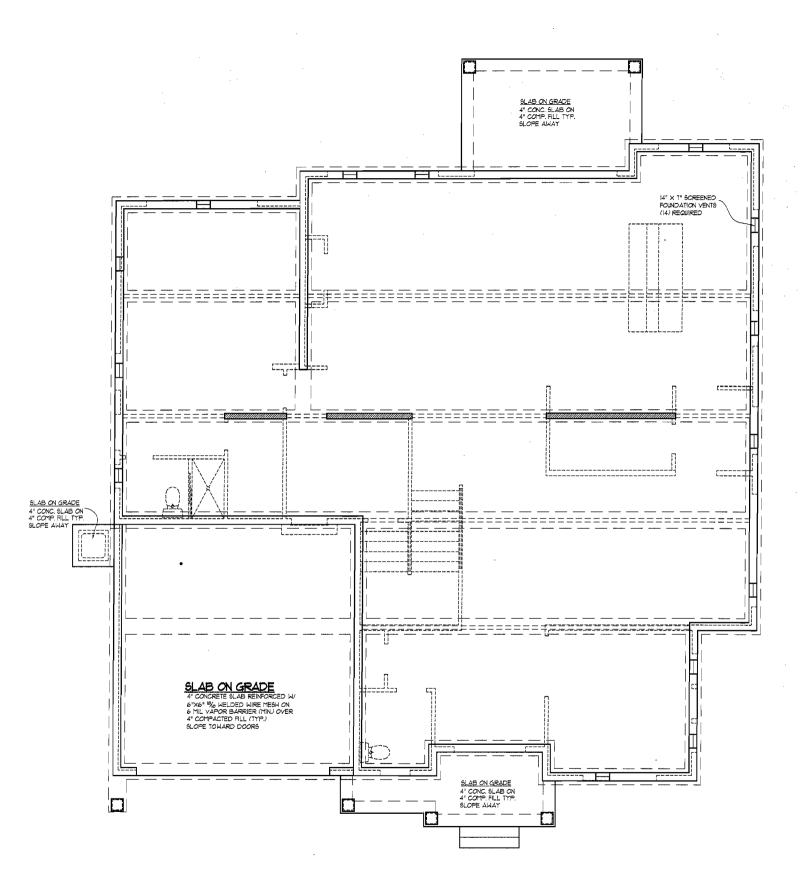

$$\frac{\text{ve-Le}_{\text{w}}}{540} = 32.36 \,\text{ft}^{-1} \,\text{lb}$$

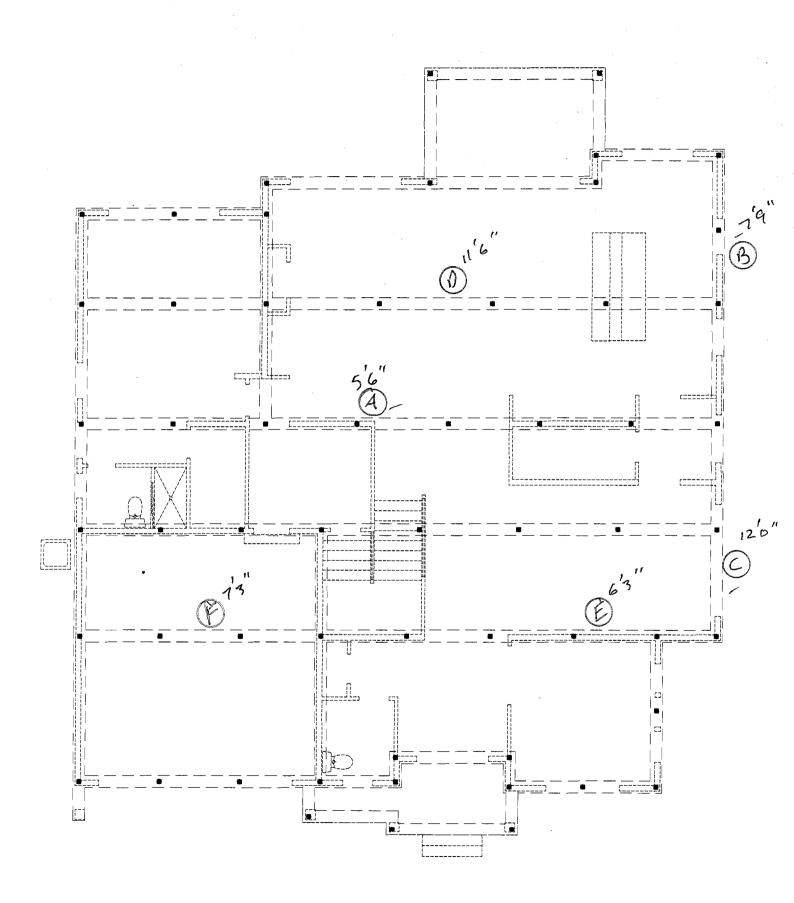

$$\frac{\text{ve-Le}_{\text{W}}}{54\text{ft}} = 32.36 \,\text{ft}^{-1} \cdot \text{lb}$$
 $\frac{\text{E}_{\text{e}} \cdot \text{Le}_{\text{s}}}{54\text{ft}} = 23.85 \,\text{ft}^{-1} \cdot \text{lb}$

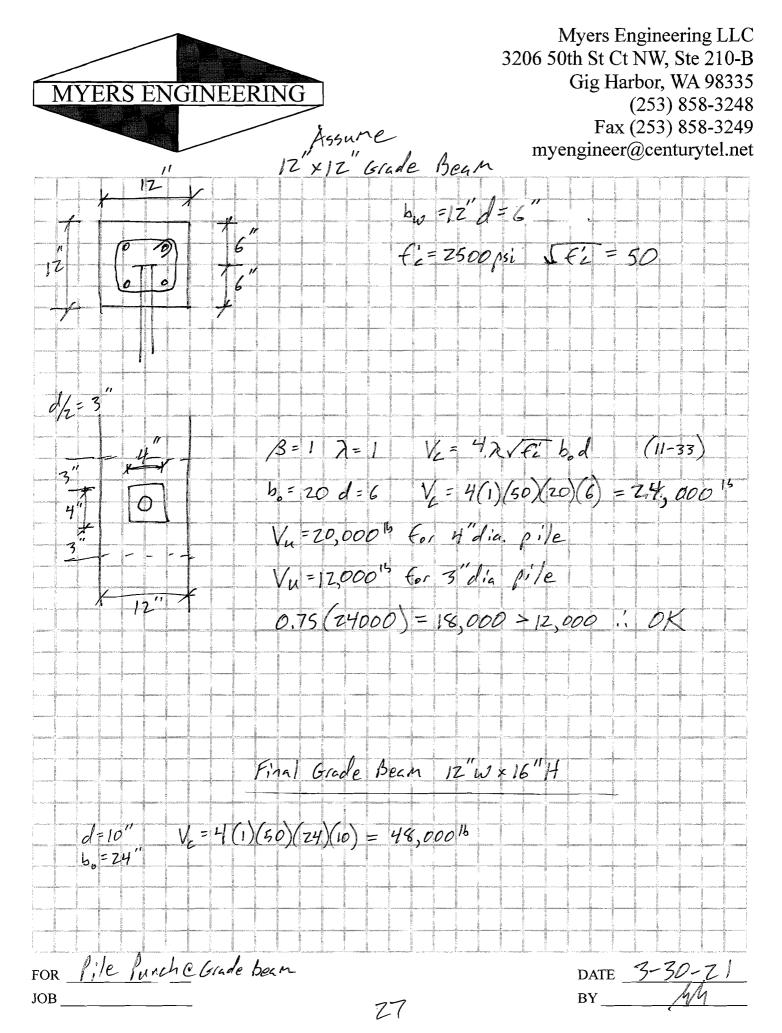

Wall Line F:

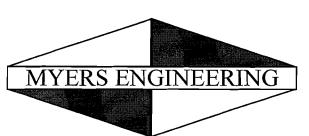
$$\frac{\text{vf} \cdot \text{Lf}_{\text{w}}}{50 \text{ft}} = 73.11 \text{ ft}^{-1} \cdot \text{lb}$$
 $\frac{\text{E}_{\text{f}} \cdot \text{Lf}_{\text{s}}}{50 \text{ft}} = 60.47 \text{ ft}^{-1} \cdot \text{lb}$

$$\frac{E_{f} \cdot Lf_{s}}{50 \text{ft}} = 60.47 \, \text{ft}^{-1} \cdot \text{lb}$$

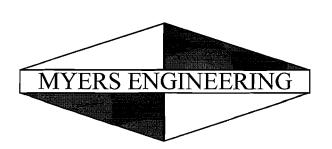






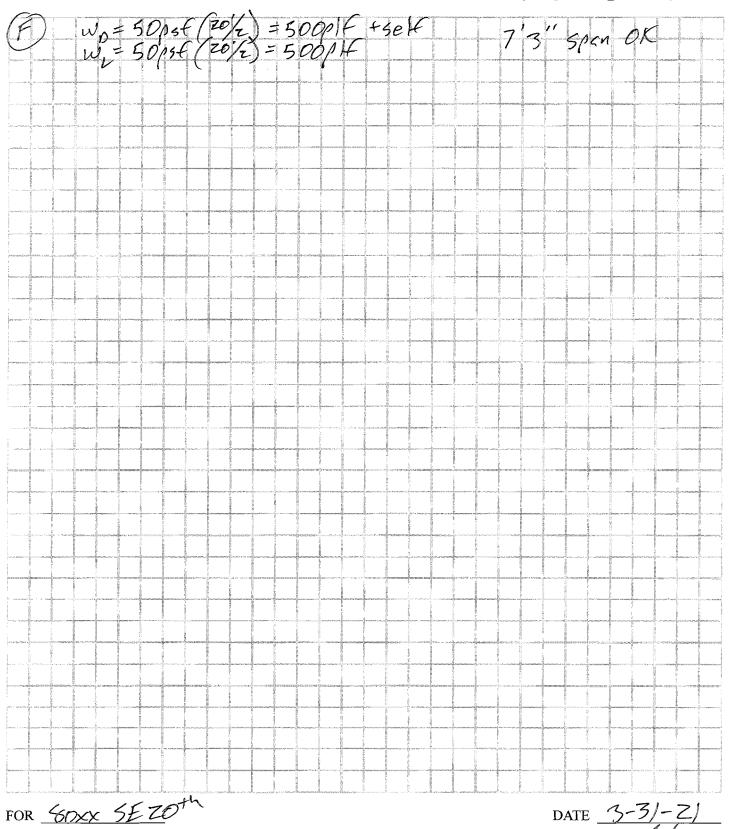

MAIN FLOOR JOISTS SHALL BE: $2 \times |\emptyset|$ HF # 2 JOISTS @ |6" O.C. UNLESS NOTED OTHERWISE (UN.O.)

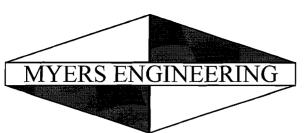
DROPPED FRAMING FOR FLUSH ENTRY SHOWERS: PROVIDE 2X6 LEDGERS & BLOCKING AROUND PERIMETER TO ACCEPT EDGE NAILING, SECURE 2X6 TO PERIMETER FRAMING W/120d COMMON NAILS (0,148"x3") STAGGERED AT 6" O.C.



Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net

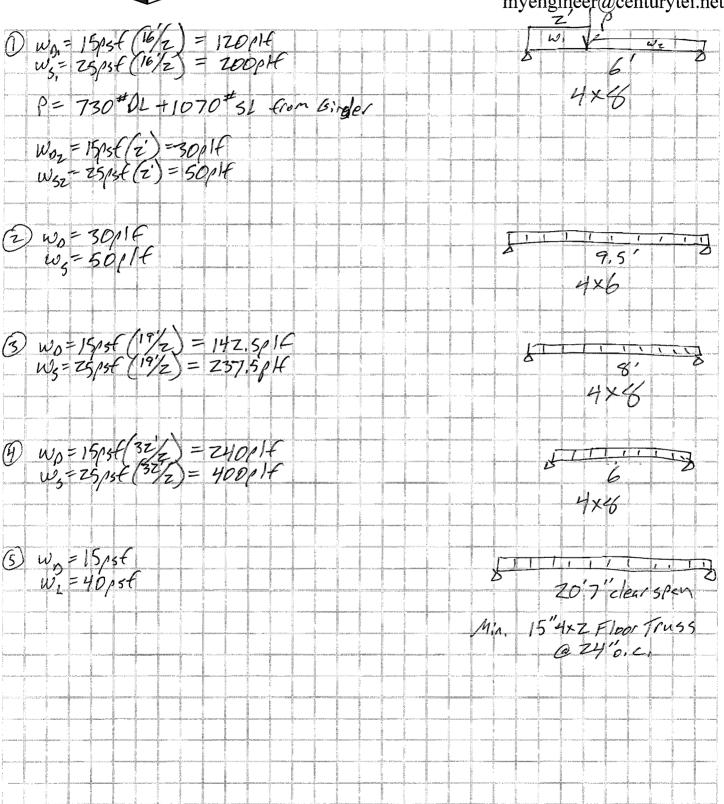
Grade Beams

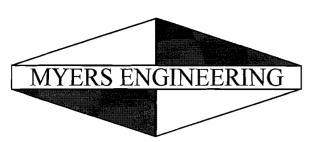

Wg = 240 p) F (Roof) WO Total = 626 plf + self $w_{02} = 108\rho IF (Ext, w_{01}) / W_{10tal} = 740\rho IF$ $w_{03} = 135\rho IF (uper FIV) / w_{3-70tal} = 400\rho IF$ $w_{43} = 360\rho IF (uper FIV) / w_{3-70tal} = 400\rho IF$ 565/Kn MKX Won = 143/14 (hain Fli) (B) $w_s = 15psf(4\frac{2}{2}) + 12psf(11.5') + 15psf(1') = 468plf + self$ $w_s = 40plf$ $w_s = 25psf(4\frac{2}{2}) = 525plf$ 79"5Pan Mcx $w_0 = 15/15f(z'+1'+1')+12/15f(q'+q') = 276/16 + 5elf$ $w_1 = 40/15f(z'+1') = 80/16$ $w_2 = 25/15f(z') = 50/16$ 12'0'spen wp = 165 plf + self w = 440plf 11'6" Max span 6'3" Span Max Ws = 382.5017 Wz = 870 pt


FOR <u>40 xx 56 20 th</u> JOB DATE 3-31-21 BY M7

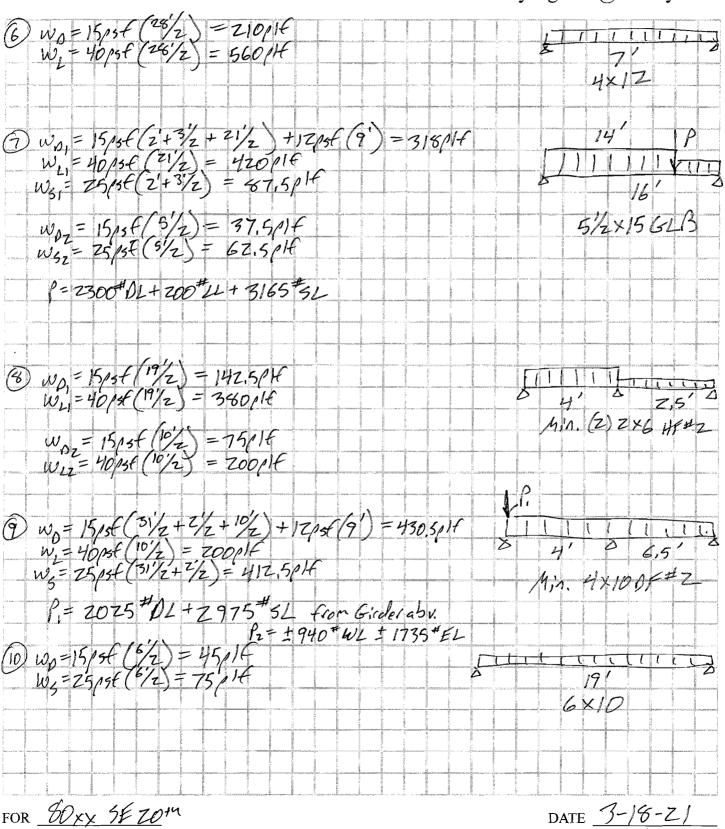
JOB

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net

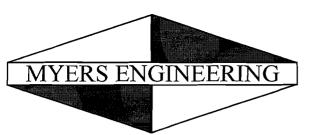

FOR SOXX SE ZOTH


JOB

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248

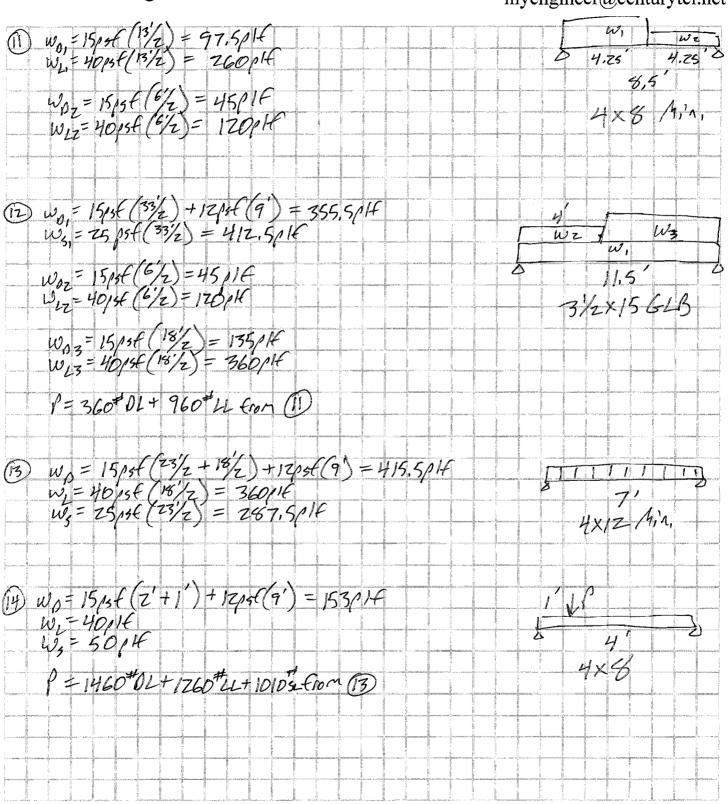

Fax (253) 858-3249

myengineer@centurytel.net

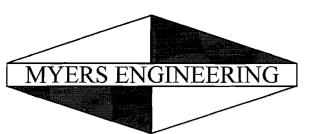


Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net

3/

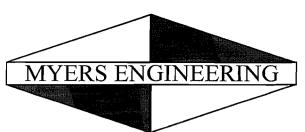


FOR <u>80 xx 5E 20</u>+4

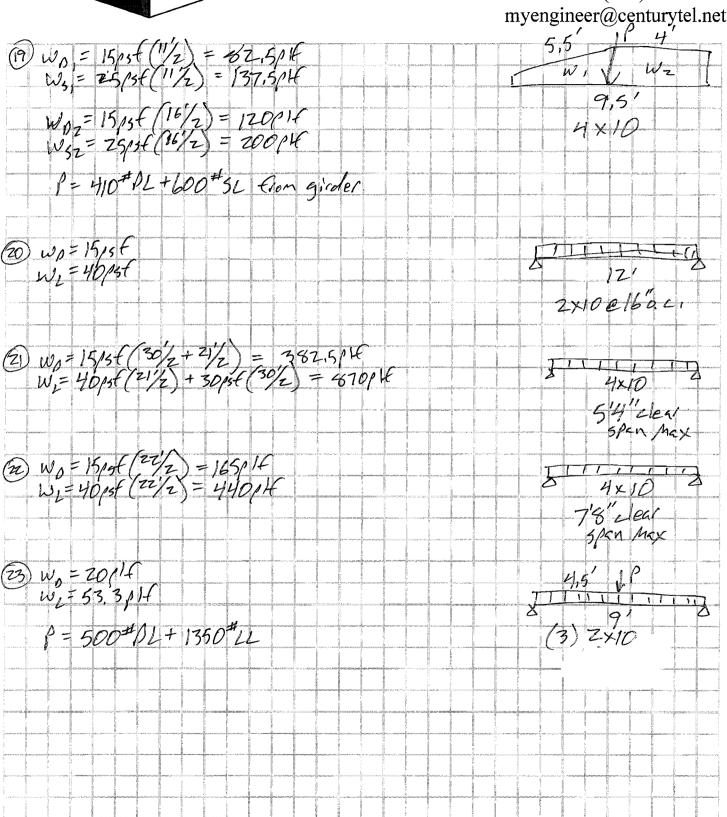

JOB

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249 myengineer@centurytel.net

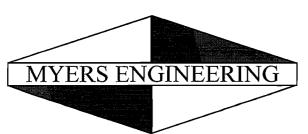
DATE 3-18-21


32

Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335 (253) 858-3248 Fax (253) 858-3249


myengineer@centurytel.net (S) $w_0 = 15pst(14/z + z') + 12pst(9') = 243plf$ $w_1 = 40pst(14/z) = 1260plf$ $w_3 = 25pst(z') = 50plf$ $w_{12} = 15 \mu f (3/2 + 2^{3}) + 12 \mu f (9^{3}) = 175.5 \mu F$ $w_{12} = 40 \mu f (5/2) = 100 \mu F$ $w_{32} = 50 \mu F$ W03= 15psf (12/2) = 90pf W53= 75psf (12/2) = 150plf Wgy = 15/5 ((17/2)(1,25) = 160/18 Wgy = 25/5 (17/2)(1,25) = 266/18 P= 410 0L + 600 5L from hip girder (16) Wp = 15/56 (18/2) = 135/4 Wz = 25/56 (18/2) = 225/16 (17) $w_p = 15psE(2'+1') + 12psE(9') = 153pIE$ $w_1 = 40pIE$ $w_3 = 50pIE$ (18) w = 15pst(z) = 30/16 w = 25/15t(z) = 50/16 12'3" 4x6 Min

FOR <u>80 xx 5E 70</u>th JOB DATE 3-18-21 BY MM


Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335

(253) 858-3248 Fax (253) 858-3249

FOR SOXX SE ZO

DATE <u>3-18-21</u> BY <u>My</u>

FOR SOXX SEZOTA

JOB _____


Myers Engineering LLC 3206 50th St Ct NW, Ste 210-B Gig Harbor, WA 98335

(253) 858-3248 Fax (253) 858-3249

rangingar@aanturutal nat

DATE 3-18-Z1

	myengineer@centurytel.net
6 15. 6 (32/ £19/1) 4 15.4 (60) -1115 (11/6)	15/1
(24) Wp = 15/55 (1/2 - /2) +12/55 (9) - 415,5/14	and the state of t
$(24) \omega_0 = 15 psf(32/2 + 9/2) + 12 psf(9') = 415.5 plf$ $\omega_1 = 40 psf(9'2) = 180 plf$ $\omega_2 = 25 psf(32/2) = 400 plf$	3,5
$W_{\mathbf{S}} = D_{\mathbf{I}}^{\mathbf{S}} + (1 \cdot A_{\mathbf{S}})^{-1} \cdot D_{\mathbf{I}}^{\mathbf{I}} \mathbf{G}$	
P, = 1055 + 02 + 1550 SC From Girder Truss	4X10
The control of the co	
P2 = 630#D1+1050#3L From hecales	
and the second s	

Wood Beam

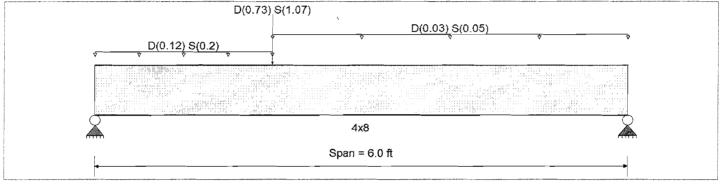
File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 1. Header at Girder

CODE REFERENCES


Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

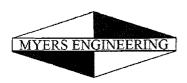
Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb - Fc - Prll	900.0 psi 1,350.0 psi	Ebend- xx Eminbend - xx	1,600.0ksi 580.0ksi
Wood Species : DouglasFir-Larch Wood Grade : No.2	Fc - Perp Fv	625.0 psi 180.0 psi	Eminoena - XX	500.0 KSI
	Ft	575.0 psi	Density	31.210 pcf

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Applied Loads

Service loads entered. Load Factors will be applied for calculations.


Load for Span Number 1

 $\begin{array}{l} \mbox{Uniform Load}: \ D = 0.120, \ S = 0.20 \ k/ft, \ \mbox{Extent} = 0.0 -->> 2.0 \ \mbox{ft}, \ \mbox{Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: \ D = 0.030, \ S = 0.050 \ \mbox{k/ft}, \ \mbox{Extent} = 2.0 -->> 6.0 \ \mbox{ft}, \ \mbox{Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Tributary Width} = 1.0 \ \mbox{Tributary Width} \\ \mbox{Tributary Width} = 1.0 \ \mbox{Tributary Width} = 1.0 \ \mbox{Tributary Width} \\ \mbox{Tributary Width} = 1.0 \ \$

Point Load: D = 0.730, S = 1.070 k @ 2.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	4x8	ximum Shear Stress Ratio Section used for this span	=	0.471 : 1 4x8
	=	1,186.34psi 1,345.50psi		=	97.58 psi 207.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	=	+D+S 1.993ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	=	+D+S 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	on .	0.055 in Ratio = 0.000 in Ratio = 0.091 in Ratio = 0.000 in Ratio =	1311 >=360 0 <360 789 >=240 0 <240		

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	1.840	0.920	
Overall MINimum	1.113	0.557	
D Only	0.727	0.363	
+D+L	0.727	0.363	
+D+S	1.840	0.920	
+D+0.750L	0.727	0.363	
+D+0.750L+0.750S	1.562	0.781	
+0.60D	0.436	0.218	
S Only	1.113	0.557	

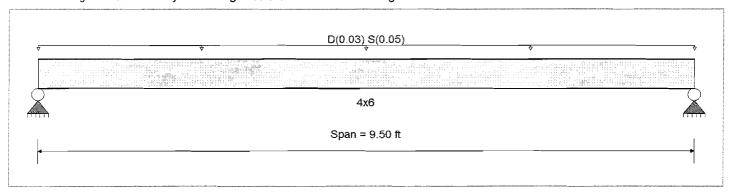
Wood Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31 MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 2. Header at Front Gable

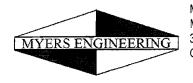

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design		Fb+	900.0 psi	E : Modulus of Elasticity	
Load Combination IBC 2018	-	Fb -	900.0 psi	Ebend- xx	1,600.0ksi
		Fc - Prli	1,350.0 psi	Eminbend - xx	580.0ksi
Wood Species : DouglasFir-La	arch	Fc - Perp	625.0 psi		
Wood Grade : No.2		Fv	180.0 psi		
		Ft	575.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully	Braced against lateral-torsional b	ouckling		•	·


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.030, S = 0.050, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.456.1 Ma	ximum Shear Stress Ratio	=	0.129 : 1
Section used for this span		4x6	Section used for this span		4x6
	=	613.74psi		=	26.80 psi
	=	1,345.50psi		=	207.00 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	4.750ft	Location of maximum on span	=	9.049 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Defle	ction	0.119 in Ratio =	960 >= 360		
Max Upward Transient Deflection	n	0.000 in Ratio =	0 < 360		
Max Downward Total Deflection		0.190 in Ratio =	600 >= 240		and the second
Max Upward Total Deflection		0.000 in Ratio =	0 < 240		

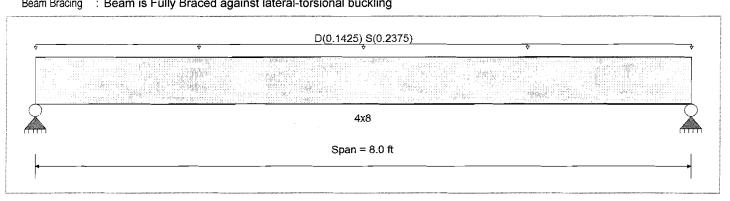
Vertical Reactions		Support no	otation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	0.380	0.380		-	
Overall MINimum	0.238	0.238			
D Only	0.143	0.143			
+D+L	0.143	0.143			
+D+S	0.380	0.380			
+D+0.750L	0.143	0.143			
+D+0.750L+0.750S	0.321	0.321			
+0.60D	0.086	0.086			
S Only	0.238	0.238			

Wood Beam

File: 80xx SE 20th ST.ec6
Software copyright ENERCALC, INC. 1983-2020, Build: 12:20:5:31
MYERS ENGINEERING

Lic. #: KW-06008232

DESCRIPTION: 3. Header at side Gable

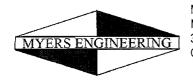

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0 ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv	180.0 psi		
11000 01000	Ft	575.0 psi	Density	31.210 pcf
Ream Bracing : Ream is Fully Braced against lateral tors	ional buckling		•	•


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.1425, S = 0.2375, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.8 8 4: 1 Ma 4x8	ximum Shear Stress Ratio Section used for this span	=	0.371 : 1 4x8
	=	1,189.77psi		. =	76.74 psi
	=	1,345.50psi		±-	207.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	≃ =	+D+S 4.000ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	==	+D+S 7.416 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	on	0.124 in Ratio = 0.000 in Ratio = 0.198 in Ratio = 0.000 in Ratio =	775 >=360 0 <360 484 >=240 0 <240		

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	1.520	1.520	
Overall MINimum	0.950	0.950	
D Only	0.570	0.570	
+D+L	0.570	0.570	
+D+S	1.520	1.520	
+D+0.750L	0.570	0.570	
+D+0.750L+0.750S	1.283	1.283	
+0.60D	0.342	0.342	
S Only	0.950	0.950	
o om,	0.550	0.550	

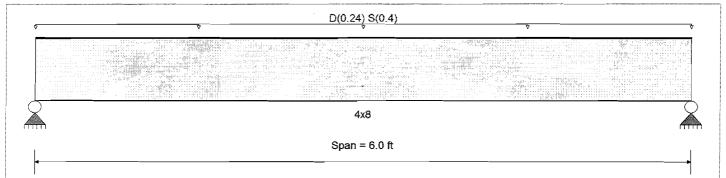
Wood Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

Lic. # : KW-06008232 **DESCRIPTION:** 4. Typical Roof Header

CODE REFERENCES


Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0 ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv	180.0 psi		
	Ft	575.0 psi	Density	31.210 pcf

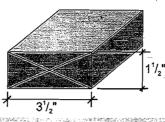
Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Applied Loads

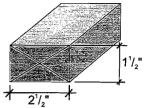
Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.240, S = 0.40, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=		ximum Shear Stress Ratio	=	0.440 : 1
Section used for this span		4x8	Section used for this span		4x8
	=	1,127.15psi		=	91.13 psi
	=	1,345.50psi		=	207.00 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	3.000ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	tion	0.066 in Ratio =	1091 >=360		
Max Upward Transient Deflection	n	0.000 in Ratio =	0 < 360		
Max Downward Total Deflection		0.106 in Ratio =	682 >=240		
Max Upward Total Deflection		0.000 in Ratio =	0 < 240		-


Vertical Reactions		Support notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2		
Overall MAXimum	1.920	1.920		
Overall MINimum	1.200	1.200		
D Only	0.720	0.720		
+D+L	0.720	0.720		
+D+S	1.920	1.920		
+D+0.750L	0.720	0.720		
+D+0.750L+0.750S	1.620	1.620		
+0.60D	0.432	0.432		
S Only	1.200	1.200		

Floor Truss Span Tables


These allowable spans are based on NDS 91. Maximum deflection is limited by L/360 or L/480' under live load. Basic Lumber Design Values are F₀ = 2000 psi F₀ = 1100 psi F_{ω} =2000 psi E=1,800,000 psi Duration Of Load = 1.00. Spacing of trusses are center to center (in inches). Top Chord

Dead Load = 10 psf: Bottom Chord Dead Load = 5 psf. Center Line Chase = 24" max. Trusses must be designed for any special loading, such as concentrated loads. Other floor and roof loading conditions, a variety of species and other lumber grades are available.

3x2 Lumber

-Center -	Deflection
Spacing	Limit
16" o.c.	L/360
	L/480
19.2" o.c.	1/360
	== £/480
	±/360
24" o.c.	
Control of the sand state and the sand state of	L/480

			E				
			F				

		Iruss	warmen and a make a little and		San Maria
12"	14"	16"	18"	20"	22"
22'2"	24'11"	26'10"	28'8"	30'4"-	31'11"
20'2"	22'7"	24'11"	27'2"	29'4"	31'5"
20'9"	22'8"	24'4"	26'0"	27'6"	29'0"
18'11"	21'3"	23'6"	25'7"	27'6"	29'0"
18'5" /	20'1"	21'7"	23'1"	24'5"	25'9"
177" {			23'1"	The state of the state of	25'9"

40 PSF Live Load 55 PSF Total Load

			Truss	Depth			ý
201	12"	14"	16"	18"	20"	-22"	
	19'0"	20'9"	22'4"	23'10"	25'3"	26'7"	3
	_18'0"	20'2"	22"4"	23'10"	-25'3"-	- 26'7"	
	17'3"	18'9"	20'3"	21'7"	22'10"	24'1"	2
	16'11"	18!9"	20'3"	21'7"	22'10"	24'1"	3
	15'2"	16'7"	17'10"	19'1"	20'2"	21'3"	
	15'2"	16'7"	17'10"	19'1"	20'2"	21'3"	

16" o.c.	1 /360
	£/480
19.2" o.c.	1/360
	£/480-
24" o.c.	L/360
	L/480
Committee and the second second second	ANALYSISSEE AN ANALYSISSEE AND ANALYSISSEE ANALYSISSEE AND ANALYSISSEE ANA
The second of the second of the second	average and a second se
Control of the Contro	w/w//pipilitate placement management particles;
Control of the Contro	CATALOGUE DE CAMADA LA CALLACTE

3	Υ.		100		•			181		100	× .	_	e		ı.
8		V.,				-		4 6	w	T-	-	и.	Υ.	10	٠.
Š	4			•	•			E		-	301	: U	A.C.	15	
Ŧ,	-	7.1	- 3	-100		+ -	T. 4.	 			ುತ	CŽP.	hang"		
				_		_	_			1		3	Mr.	~ ~	
÷	-	70		71		•			ve.	-			N/	10	н
ï		100	- 4	æ			-	 To	44	ш	-25	۳.	1	ж	и
۲	ē -			20	0.00	1.45	80	 2.3	7.73	5 43	4.4	77.	700	Ξ.	

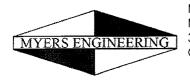
12"	/5 14"	PSF 1 16"	otal I 18"	20"	22"
19'4"	21'4"	23'0"	24'6"	26'0"	27'4"
17'7"	19'9"	21'10"	23'9"	25'8"	27'4"
17'9" 16'7"	19'4" 18'7"	20'10" 20'6"	22'3" 22'3"	23'7" 23'7"	24'10" 24'10"
15'9" 15'4"	17'2" 17'2"	18'6" 18'6"	19'9" 19'9"	20'11" 20'11"	22'0" - 22'0"
15'4"	112	100	122	20 11	

60	PS	FL	ive	L	Da	ď
75	23	To	Ta	L	00	d

12"	75	200 - 20 mg 55	tal Lo 18"		22"
16'3"	17'9"	19'2"	20'5"	21'8"	22'9"
15'9"	17'8"	19'2"	20'5"	21'8"	22'9"
14'9"	16'1"	17'4"		19'7"	20'7"
14'9"	"16'1"	17'4"		19'7"	20'7"
13'0"	14'2"	15'3"	16'4"	17'3"	_18'2"
13'0"	14'2"	15'3"	16'4"	17'3"	18'2"

16" o.c.	£/360
	1/480
19.2" o.c.	£/360
	E/480
	L/360
24" o.c.	
	L/480

8	35 F	SF	Liv	e Lo	pad	
100		7.5	9000	-		
		775	Tot	a l	.oad	
45.0	- 1077557		7077	77.14	- Table	


	IUU		ru r	900	
12"	14"	16"	18"	20"	22"
16'11"	18'6"	19'11"	21'3"	22'6"	23'8"
	Acres on the second	7		22'6"	23'8"
an area and therefore	16'9"	18'1"		20'5"	21'6"
14'9"	16'6"	18'1"	19'3"	20'5"	21'6"
13'8" 1	4'10"	16'0"	17'1"	18'1"	19'1"
	The second of th	No. of the American		18'1"	19'1"
Carry to a series of the	at the common common and			Margari.	

12"		Super Co.	otal L		22"
14'1"	7 12 12 12	16'7"	17'8"	18'9"	19'9"
14'0"		16'7"	17'8"	18'9"	19'9"
12'9" 12'9"	13'11" 13'11"	建设设置的企业 。	100	16'11" 16'11"	Charles In the same
11'3"	12'3"	13'3"	Control of the Contro	-14'11"	15'9"
11'3"	12'3"	13'3"		14'11"	15'9"

(1) Vibration Control - Research by Virginia Tech indicates that L/480 live load deflection criteria provides a high degree of resistance to floor vibration (bounce). The building designer

desiring this benefit may choose to specify an L/480 live load deflection criteria to be used for the floor trusses:

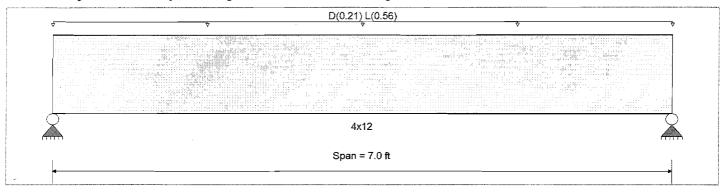
Wood Beam Lic. # KW-06008232 File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31

MYERS ENGINEERING

DESCRIPTION: 6. Floor beam at Foyer

CODE REFERENCES

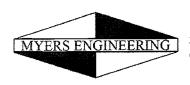

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design Load Combination IBC 2018	Fb + · Fb - Fc - Prll	900 psi 900 psi 1350 psi	E: Modulus of Elasticity Ebend- xx Eminbend - xx	1600 ksi 580 ksi
Wood Species : Douglas Fir-Larch Wood Grade : No.2	Fc - Perp Fv Ft	625 psi 180 psi 575 psi	Density	31.21 pcf

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.210, L = 0.560, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.774 1 Ma 4x12	ximum Shear Stress Ratio Section used for this span	=	0.420 : 1 4x12
	=	766.58psi		=	75.69 psi
	=	990.00psi		=	180.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 3.500ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 6.080 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	n	0.046 in Ratio = 0.000 in Ratio = 0.063 in Ratio = 0.000 in Ratio =	1834 >=480 0 <480 1333 >=360 0 <360		

Vertical Reactions		Support notation : Far left is #1		Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	2.695	2.695			
Overall MINimum	1.960	1.960			
D Only	0.735	0.735			
+D+L	2.695	2.695			
+D+S	0.735	0.735			
+D+0.750L	2.205	2.205			
+D+0.750L+0.750S	2.205	2.205			
+0.60D	0.441	0.441			
L Only	1.960	1.960			
S Only					

Wood Beam

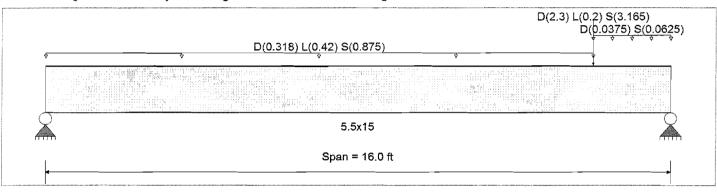
File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

MYERS ENGINEERING
MYERS ENGINEERING

DESCRIPTION: 7. Garage Door Header

CODE REFERENCES


Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

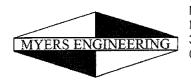
Material Properties

Analysis Method: Allowable Stress Design	. · Fb+	2,400.0 psi	E : Modulus of Elasti	icity
Load Combination 1BC 2018	Fb-	1,850.0 psi	Ebend- xx	1,800.0ksi
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0ksi
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend-yy	1,600.0ksi
Wood Grade : 24F-V4	Fv	265.0 psi	Eminbend - yy	850.0ksi
Wood Glade 12 ii V i	Ft	1,100.0 psi	Density	31.210 pcf
Dean Design C. Desertie Fully Desert empired Internal to	حصاليا مناليا مسال	•	•	'

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Applied Loads

Service loads entered. Load Factors will be applied for calculations.


Load for Span Number 1

Uniform Load : D = 0.3180, L = 0.420, S = 0.8750 k/ft, Extent = 0.0 ->> 14.0 ft, Tributary Width = 1.0 ft Uniform Load : D = 0.03750, S = 0.06250 k/ft, Extent = 14.0 ->> 16.0 ft, Tributary Width = 1.0 ft

Point Load: D = 2.30, L = 0.20, S = 3.165 k @ 14.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	5.5x15	Maximum Shear Stress Ratio Section used for this span	=	0.726 : 1 5.5 x15
	=	2,615.52psi		=	221.31 psi
	=	2,753.98psi		=	304.75 psi
Load Combination Location of maximum on span	=	+D+0.750L+0.750S 8.350ft	Load Combination Location of maximum on span	=	+D+0.750L+0.750S 14.774 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection		0.512 in Ratio 0.000 in Ratio			
Max Downward Total Deflection		0.757 in Ratio	- 000		
Max Upward Total Deflection		0.000 in Ratio			

Vertical Reactions		Support notation : Far le	Support notation : Far left is #1		
Load Combination	Support 1	Support 2			_
Overall MAXimum	10.766	12.277			
Overall MINimum	7.294	8.246			
D Only	2.796	4.031			
+D+L	6.129	6.778			
+D+S	10.091	12.277			
+D+0.750L	5.296	6.091			
+D+0.750L+0.750S	10.766	12.276			
+0.60D	1.678	2.418			
L Only	3.333	2.748			
S Only	7.294	8.246			

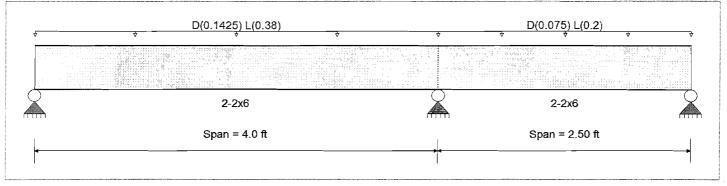
: Beam is Fully Braced against lateral-torsional buckling

Wood Beam Lic. # KW-06008232 File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31

MYERS ENGINEERING

DESCRIPTION: 8. header at Shower


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design		850.0 psi	E : Modulus of Elasti	city
Load Combination IBC 2018	Fb -	850.0 psi	Ebend- xx	1,300.0ksi
	Fc - Prll	1,300.0 psi	Eminbend - xx	470.0 ksi
Wood Species : Hem-Fir	Fc - Perp	405.0 psi		
Wood Grade : No.2	Fv	150.0 psi		
11000 51000 1	Ft	525.0 psi	Density	26.840 pcf

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1

Uniform Load: D = 0.1425, L = 0.380, Tributary Width = 1.0 ft

Load for Span Number 2

Uniform Load: D = 0.0750, L = 0.20, Tributary Width = 1.0 ft

DESIGN SUMMARY				72.3	Design OK
Maximum Bending Stress Ratio	=	0.521: 1 Ma	ximum Shear Stress Ratio	=	0.602 : 1
Section used for this span		2-2x6	Section used for this span		2-2x6
	=	575.77psi		=	90.26 psi
	=	1,105.00psi		=	150.00 psi
Load Combination		+D+L	Load Combination		+D+L
Location of maximum on span	=	4.000ft	Location of maximum on span	=	3.553 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	ction	0.024 in Ratio =	1992 >= 360		
Max Upward Transient Deflectio	n	-0.004 in Ratio =	7979>=360		
Max Downward Total Deflection		0.033 in Ratio =	1448>=240		
Max Upward Total Deflection		-0.005 in Ratio =	5803 >=240		

Vertical Reactions		Support notation : Far left is #1		Values in KIPS
Load Combination	Support 1	Support 2	Support 3	
Overall MAXimum	0.864	1.860	0.053	 -
Overall MINimum	0.628	1.353	0.039	
D Only	0.236	0.507	0.015	
+D+L	0.864	1.860	0.053	
+D+S	0.236	0.507	0.015	
+D+0.750L	0.707	1.522	0.044	
+D+0.750L+0.750S	0.707	1.522	0.044	
+0.60D	0.141	0.304	0.009	
L Only	0.628	1.353	0.039	
S Only				

Wood Beam Lic. # : KW-06008232 File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20.5.31
MYERS ENGINEERING

DESCRIPTION: 8a. header at Shower

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb +	850.0 psi	E : Modulus of Elasti	city
Load Combination IBC 2018	Fb -	850.0 psi	Ebend-xx	1,300.0ksi
	Fc - Prll	1,300.0 psi	Eminbend - xx	470.0ksi
Wood Species : Hem-Fir	Fc - Perp	405.0 psi		
Wood Grade : No.2	F۷ '	150.0 psi		
7700d Glade . 170.2	Ft	525.0 psi	Density	26.840 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional b	ouckling	·	-	F

D(0.1425) L(0.38)

2-2x6 Span = 4.0 ft

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.1425, L = 0.380, Tributary Width = 1.0 ft

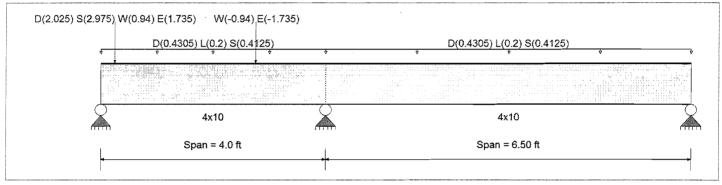
DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.75 0:1 Ma	ximum Shear Stress Ratio	=	0.490 : 1
Section used for this span		2-2x6	Section used for this span		2-2x6
	=	829.09psi		=	73.50 psi
	=	1,105.00psi		=	150.00 psi
Load Combination		+D+L	Load Combination		+D+L
Location of maximum on span	=	2.000ft	Location of maximum on span	=	3.547 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Defle	ction	0.041 in Ratio =	1178 >= 360		
Max Upward Transient Deflection	n	0.000 in Ratio =	0 < 360		
Max Downward Total Deflection		0.056 in Ratio =	857 >=240		
Max Upward Total Deflection		0.000 in Ratio =	0 < 240		

Vertical Reactions		Suppo	Values in KIPS		
Load Combination	Support 1	Support 2			
Overall MAXimum	1.045	1.045			
Overall MINimum	0.760	0.760			
D Only	0.285	0.285			
+D+L	1.045	1.045			
+D+S	0.285	0.285			
+D+0.750L	0.855	0.855			
+D+0.750L+0.750S	0.855	0.855			
+0.60D	0.171	0.171			
L Only	0.760	0.760			
S Only					

Wood Beam Lic. # : KW-06008232 File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

DESCRIPTION: 9. Front Rim Beam


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

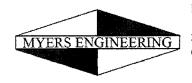
Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	city
Load Combination IBC 2018	Fb -	900.0 psi	Ebend-xx	1,600.0 ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0.ksi
Wood Species : Douglas Fir-Larch	Fc - Perp	625.0 psi		
Wood Grade No.2	Fv .	180.0 psi		
71000 01000	Ft	575.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional b	ouckling		•	,

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1

Uniform Load: D = 0.4305, L = 0.20, S = 0.4125, Tributary Width = 1.0 ft Point Load: D = 2.025, S = 2.975, W = 0.940, E = 1.735 k @ 0.250 ft


Point Load: W = -0.940, E = -1.735 k @ 2.750 ft

Load for Span Number 2

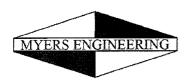
Uniform Load: D = 0.4305, L = 0.20, S = 0.4125, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.734 1 N 4x10	laximum Shear Stress Ratio Section used for this span	=	0.692 : 1 4x10
	=	911.02psi	. '	=	199.16 psi
	=	1,242.00psi		=	288.00 psi
Load Combination Location of maximum on span	=	+D+0.750L+0.750S 4.000ft	Load Combination Location of maximum on span	+1.105D+0.750I =	_+0.750S-1.575E 3.240 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection Max Downward Transient Deflection		0.023 in Ratio =	= 3381 >=360		
Max Upward Transient Deflection	n	-0.005 in Ratio =	9339>=360		
Max Downward Total Deflection Max Upward Total Deflection		0.053 in Ratio = -0.005 in Ratio =			

Vertical Reactions		Support notation : Far left is #1		Values in KIPS
Load Combination	Support 1	Support 2	Support 3	
Overall MAXimum	5.465	7.122	2.341	
Overall MINimum	-1.184	1.245	-0.061	
D Only	2.302	3.126	1.117	
+D+L	2.500	4.502	1.643	
+D+S	5.465	6.206	2.180	
+D+0.750L	2.450	4.158	1.512	
+D+0.750L+0.750S	4.823	6.468	2.309	
+D+0.60W	2.686	2.722	1.137	
+D-0.60W	1.917	3.531	1.098	
+D+0.70E	3.130	2.255	1.160	•

Wood Beam

File; 80xx SE 20th ST.ec6


Lic.#: KW-06008232

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5.31

MYERS ENGINEERING

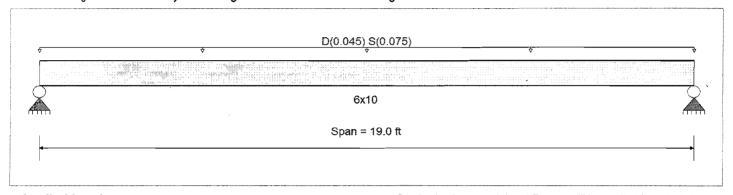
DESCRIPTION: 9. Front Rim Beam

Vertical Reactions		Sup	port notation : Far left	is #1	Values in KIPS
Load Combination	Support 1	Support 2	Support 3		
+D-0.70E	1.473	3.998	1.075		· · · · · · · · · · · · · · · · · · ·
+D+0.750L+0.450W	2.739	3.855	1.527		
+D+0.750L-0.450W	2.162	4.461	1.497		
+D+0.750L+0.750S+0.450W	5.111	6.165	2.324		
+D+0.750L+0.750S-0.450W	4.534	6.772	2.294		
+D+0.750L+0.750S+0.5250E	5.444	5.815	2.341		
+D+0.750L+0.750S-0.5250E	4.201	7.122	2.277		
+0.60D+0.60W	1.766	1.471	0.690		
+0.60D-0.60W	0.996	2.280	0.651		
+0.60D+0.70E	2.209	1.005	0.713		
+0.60D-0.70E	0.552	2.747	0.628		
L Only	0.198	1.376	0.526		
S Only	3.163	3.080	1.063		
W Only	0.641	-0.674	0.033		
-W	-0.641	0.674	-0.033		
E Only	1.184	-1.245	0.061		
E Only * -1.0	-1.184	1.245	-0.061		

Wood Beam Lic.#: KW-06008232 File: 80xx SE 20th ST ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

DESCRIPTION: 10. Roof beam in front of Garage

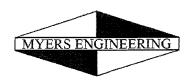

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb +	875 psi	E : Modulus of Elastic	,	
Load Combination JBC 2018	Fb -	875 psi	Ebend- xx	1300ksi	
	Fc - Prll	600 psi	Eminbend - xx	470ksi	
Wood Species : Douglas Fir-Larch	Fc - Perp	625 psi			
Wood Grade : No.2	Fv	170 psi			
11000 01000	Ft	425 psi	Density	31.21 pcf	
Beam Bracing : Beam is Fully Braced against lateral-torsi	ional buckling		•	,	


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.0450, S = 0.0750, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.781 : 1 Ma	ximum Shear Stress Ratio	=	0.154 : 1
Section used for this span		6x10	Section used for this span		6x10
	=	785.45psi	•	=	30.10 psi
	=	1,006.25psi		=	195.50 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	9.500ft	Location of maximum on span	=	18.237 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span # 1
Maximum Deflection					
Max Downward Transient Deflect	tion	0.433 in Ratio =	526>=360		
Max Upward Transient Deflection	1	0.000 in Ratio =	0<360		
Max Downward Total Deflection		0.693 in Ratio =	329>=240		
Max Upward Total Deflection		0.000 in Ratio =	0 < 240		

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	1.140	1.140	
Overall MINimum	0.713	0.713	
D Only	0.428	0.428	
+D+L	0.428	0.428	
+D+S	1.140	1.140	
+D+0.750L	0.428	0.428	
+D+0.750L+0.750S	0.962	0.962	
+0.60D	0.257	0.257	
S Only	0.713	0.713	

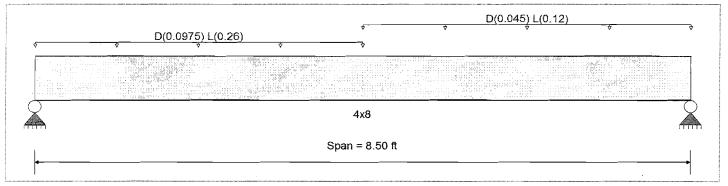
Wood Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

Lic. # . KW-06008232

DESCRIPTION: 11. Header at top of Stair


CODE REFERENCES

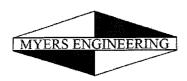
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb -	900.0 psi	Ebend-xx	1,600.0ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv	180.0 psi		
77000 Orduc (17012	Ft	575.0 psi	Density	31.210 pcf
Ream Bracing · Ream is Fully Braced against lateral-ton	sional buckling	•	•	r

Applied Loads


Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1

 $\begin{array}{ll} \mbox{Uniform Load}: & D = 0.09750, \ L = 0.260 \ \mbox{k/ft, Extent} = 0.0 \ -->> 4.250 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ -->> 8.50 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ -->> 8.50 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ -->> 8.50 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ -->> 8.50 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ -->> 8.50 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ -->> 8.50 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ -->> 8.50 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ -->> 8.50 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ -->> 8.50 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft, Tributary Width} = 1.0 \ \mbox{ft} \\ \mbox{Uniform Load}: & D = 0.0450, \ L = 0.120 \ \mbox{k/ft, Extent} = 4.250 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Load}: & D = 0.0450, \ L = 0.120 \ \mbox{Lo$

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	4x8	ximum Shear Stress Ratio Section used for this span	=	0.363 : 1 4x8
	=	946.29psi 1,170.00psi		=	65.27 psi 180.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 3.692ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflec Max Upward Transient Deflectio Max Downward Total Deflection Max Upward Total Deflection		0.126 in Ratio = 0.000 in Ratio = 0.174 in Ratio = 0.000 in Ratio =	807 >=480 0 <480 586 >=240 0 <240		

Vertical Reactions		Suppo	rt notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			_
Overall MAXimum	1.315	0.906			
Overall MiNimum	0.956	0.659			
D Only	0.359	0.247			
+D+L	1.315	0.906			
+D+S	0.359	0.247			
+D+0.750L	1.076	0.741			
+D+0.750L+0.750S	1.076	0.741			
+0.60D	0.215	0.148			
L Only	0.956	0.659			
S Only	~				

Wood Beam

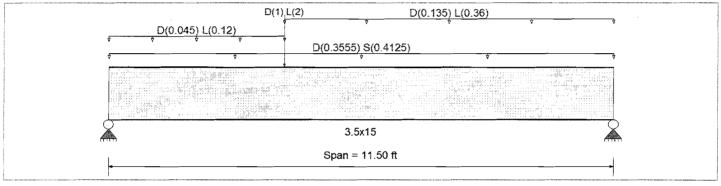
File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

Lic.# KW-06008232

DESCRIPTION: 12. Rim Beam at Great Rm

CODE REFERENCES


Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

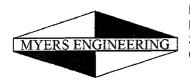
Material Properties

Analysis Method: Allowable Stress Design	Fb+	2,400.0 psi	E : Modulus of Elasticity		
Load Combination IBC 2018	Fb-	1,850.0 psi	Ebend- xx	1,800.0 ksi	
	Fc - Prll	1,650.0 psi	Eminbend - xx	950.0ksi	
Wood Species : DF/DF	Fc - Perp	650.0 psi	Ebend- yy	1,600.0 ksi	
Wood Grade : 24F-V4	F۷	265.0 psi	Eminbend - yy	850.0ksi	
	Ft	1,100.0 psi	Density	31.210 pcf	

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Applied Loads

Service loads entered. Load Factors will be applied for calculations.


Uniform Load: D = 0.3555, S = 0.4125, Tributary Width = 1.0 ft

Uniform Load : D = 0.0450, L = 0.120 k/ft, Extent = 0.0 -->> 4.0 ft, Tributary Width = 1.0 ft Uniform Load : D = 0.1350, L = 0.360 k/ft, Extent = 4.0 -->> 11.50 ft, Tributary Width = 1.0 ft

Point Load: D = 1.0, L = 2.0 k @ 4.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.729 1 Ma	ximum Shear Stress Ratio	=	0.555 : 1
Section used for this span		3.5x15	Section used for this span		3.5x15
	=	1,748.96psi		=	169.04 psi
	=	2,400.00psi		=	304.75 psi
Load Combination		+D+L	Load Combination		+D+0.750L+0.750S
Location of maximum on span	=	4.785ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflec	tion	0.121 in Ratio =	1144 >=480		
Max Upward Transient Deflection	1	0.000 in Ratio =	0 <480		
Max Downward Total Deflection		0.291 in Ratio =	474 >= 360		
Max Upward Total Deflection		0.000 in Ratio =	0<360		

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	6.890	6.834	
Overall MINimum	2.372	2.372	
D Only	3.175	3.106	
+D+L	5.756	5.704	
+D+S	5.547	5.477	•
+D+0.750L	5.111	5.055	
+D+0.750L+0.750S	6.890	6.834	
+0.60D	1.905	1.863	
L Only	2.581	2.599	•
S Only	2.372	2.372	

Wood Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

MYERS ENGINEERING

DESCRIPTION: 13. Rim Beam at Pantry

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

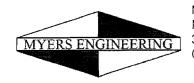
Material Properties

Analysis Method : Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	city
Load Combination 1BC 2018	Fb-	900.0 psi	Ebend-xx	1,600.0ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv	180.0 psi		
11000 Clade 110.2	Ft	575.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsional	l buckling	'		F

D(0.4155) L(0.36) S(0.2875)

4x12

Span = 7.0 ft


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.4155, L = 0.360, S = 0.2875, Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.78& 1	Maximum Shear Stress Ratio	=	0.428 : 1
Section used for this span		4x12	Section used for this span		4x12
	=	897.12psi		=	88.58 psi
	=	1,138.50psi		=	207.00 psi
Load Combination		+D+0.750L+0.750S	Load Combination		+D+0.750L+0.750S
Location of maximum on span	=	3.500ft	Location of maximum on span	=	6.080 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span # 1
Maximum Deflection					
Max Downward Transient Deflection		0.029 in Ratio			
Max Upward Transient Deflection		0.000 in Ratio			÷
Max Downward Total Deflection		0.074 in Ratio			
Max Upward Total Deflection		0.000 in Ratio	0 < 240		

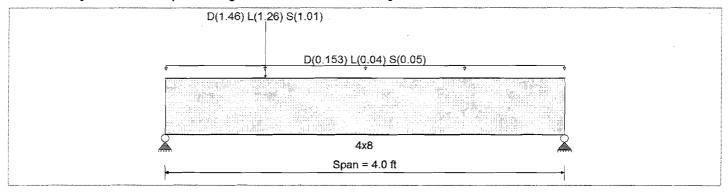
Vertical Reactions		Support notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2		
Overall MAXimum	3.154	3.154		
Overall MINimum	1.006	1.006		
D Only	1.454	1.454		
+D+L	2.714	2.714		
+D+S	2.461	2.461		
+D+0.750L	2.399	2.399		
+D+0.750L+0.750\$	3.154	3.154		
+0.60D	0.873	0.873		
L Only	1.260	1.260		
S Only	1.006	1.006		

Wood Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

Lic.#: KW-06008232 **DESCRIPTION:** 14. Header at Pantry


CODE REFERENCES

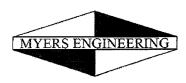
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	icity
Load Combination IBC 2018	Fb-	900.0 psi	Ebend- xx	1,600.0 ksi
	Fc - Pril	1,350.0 psi	Eminbend - xx	580.0ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv	180.0 psi		
	· Ft	575.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsion	nal buckling		·	·

Applied Loads


Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.1530, L = 0.040, S = 0.050, Tributary Width = 1.0 ft

Point Load: D = 1.460, L = 1.260, S = 1.010 k @ 1.0 ft

				Design OK
=	0.785 1 M		=	0.766 : 1
	4x8	Section used for this span		4x8
=	1,056.10psi		=	158.48 psi
=	1,345.50psi		=	207.00 psi
	+D+0.750L+0.750S	Load Combination		+D+0.750L+0.750S
=	1.007ft	Location of maximum on span	=	0.000 ft
=	Span # 1	Span # where maximum occurs	=	Span # 1
	- · - · - · · · ·			
	0.000 in Ratio =	0 < 360		
	0.036 in Ratio =	1336>=240		
	0.000 in Ratio =	0 <240		
	= =	4x8 = 1,056.10 psi = 1,345.50 psi +D+0.750L+0.750S = 1.007ft = Span # 1 ion 0.013 in Ratio = 0.000 in Ratio = 0.036 in Ratio =	### Section used for this span 1,056.10 psi	### Section used for this span 1,056.10 psi

Vertical Reactions		Supp	ort notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	2.813	1.232			
Overall MINimum	0.858	0.353			
D Only	1.401	0.671			
+D+L	2.426	1.066			
+D+S	2.259	1.024			
+D+0.750L	2.170	0.967			
+D+0.750L+0.750S	2.813	1.232			
+0.60D	0.841	0.403			
L Only	1.025	0.395			
S Only	0.858	0.353			

Wood Beam

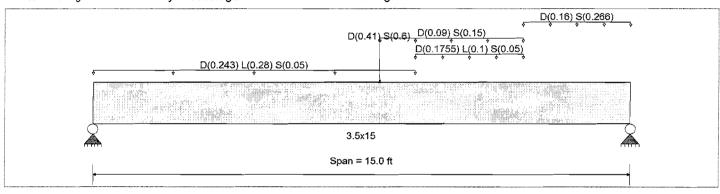
File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

Lic. #: KW-06008232

DESCRIPTION: 15. Rim beam over ADU

CODE REFERENCES


Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

_	Analysis Method : Allowable Stress Design		2400 psi	E : Modulus of Elasticit	ty
	Load Combination IBC 2018	Fb-	1850 psi	Ebend-xx	1800 ksi
		Fc - Prll	1650 psi	Eminbend - xx	950ksi
	Wood Species : DF/DF	Fc - Perp	650 psi	Ebend- yy	1600 ksi
	Wood Grade : 24F-V4	Fv '	265 psi	Eminbend - yy	850 ksi
	77000 07000 . 2 17 7 1	Ft	1100 psi	Density	31.21 pcf
	Dean Desire Desire is Fully Desired and instituted to all	: 1	•	*	

Beam Bracing : Beam is Fully Braced against lateral-torsional buckling

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1

Uniform Load : D = 0.090, S = 0.150 k/ft, Extent = 8.0 -->> 12.0 ft, Tributary Width = 1.0 ft Uniform Load : D = 0.160, S = 0.2660 k/ft, Extent = 12.0 -->> 15.0 ft, Tributary Width = 1.0 ft

Point Load: D = 0.410, S = 0.60 k @ 8.0 ft

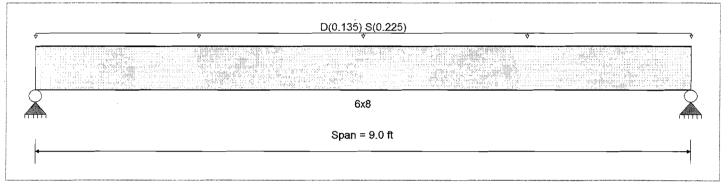
DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.574: 1 N 3.5x15	laximum Shear Stress Ratio Section used for this span	=	0.353 : 1 3.5x15
	=	1,584.53psi		=	93.49 psi
•	=	2,760.00psi		=	265.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	=======================================	+D+0.750L+0.750S 7.993ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 0.000 ft Span # 1
Maximum Deflection Max Downward Transient Deflect Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.135 in Ratio = 0.000 in Ratio = 0.382 in Ratio = 0.000 in Ratio =	= 0 <360 = 471 >=240		

	Support notation : Far left is #1	Values in KIPS
Support 1	Support 2	
4.129	3.898	
0.920	1.678	
2.048	1.915	
3.902	2.881	
2.968	3.594	
3.439	2.640	
4.129	3.898	
1.229	1.149	
1.854	0.966	
0.920	1.678	
	4.129 0.920 2.048 3.902 2.968 3.439 4.129 1.229 1.854	4.129 3.898 0.920 1.678 2.048 1.915 3.902 2.881 2.968 3.594 3.439 2.640 4.129 3.898 1.229 1.149 1.854 0.966

Wood Beam Lic. # : KW-06008232 File: 80xx SE 20th ST ec6

Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.31
MYERS ENGINEERING

DESCRIPTION: 16. Roof beam at Cov'd Patio

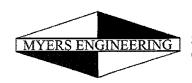

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb +	875 psi	E : Modulus of Elastic	city
Load Combination IBC 2018	Fb -	875 psi	Ebend-xx	1300 ksi
	Fc - Prll	600 psi	Eminbend - xx	470 ksi
Wood Species : Douglas Fir-Larch	Fc - Perp	625 psi		
Wood Grade : No.2	F۷	170 psi		
	Ft	425 psi	Density	31.21 pcf
Beam Bracing : Beam is Fully Braced against lateral-to	orsional buckling		•	,


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.1350, S = 0.2250, Tributary Width = 1.0 ft

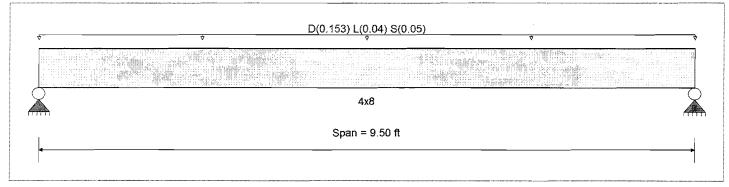
DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.843 1 Ma	aximum Shear Stress Ratio	=	0.260 : 1
Section used for this span		6x8	Section used for this span		6x8
	=	848.29psi		=	50.74 psi
	=	1,006.25psi		=	195.50 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	4.500ft	Location of maximum on span	=	8.376 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflec	tion	0.133 in Ratio =	812>=360		
Max Upward Transient Deflection	ר	0.000 in Ratio =	0 < 360		
Max Downward Total Deflection		0.213 in Ratio =	507 >=240		
Max Upward Total Deflection	<u></u>	0.000 in Ratio =	0<240		

Vertical Reactions		Support notation: Far left is #1		Values in KIPS	
Load Combination	Support 1	Support 2	· · ·		
Overall MAXimum	1.620	1.620			
Overall MINimum	1.013	1.013			
D Only	0.608	0.608			
+D+L	0.608	0.608			
+D+S	1.620	1.620			
+D+0.750L	0.608	0.608			
+D+0.750L+0.750S	1.367	1.367			
+0.60D	0.365	0.365			
S Only	1.013	1.013			

Wood Beam Lic. # : KW-06008232 File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

DESCRIPTION: 17. Header at Dining

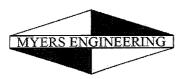

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasticity	
Load Combination 1BC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade No.2	Fv .	180.0 psi		
11000 01000 11101	Ft	575.0 psi	Density	31.210 pcf
Beam Bracing Beam is Fully Braced against lateral-tors	ional buckling	,		P


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.1530, L = 0.040, S = 0.050 , Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.72& 1 Ma 4x8	aximum Shear Stress Ratio Section used for this span	=	0.264 : 1 4x8
	= .	852.12psi		=	47.47 psi
	=	1,170.00psi		=	180.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 4.750ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 8.911 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	on	0.052 in Ratio = 0.000 in Ratio = 0.229 in Ratio = 0.000 in Ratio =	0 < 360		

Vertical Reactions		Support	notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	1.047	1.047			
Overall MINimum	0.238	0.238			
D Only	0.727	0.727			
+D+L	0.917	0.917	•		
+D+S	0.964	0.964			
+D+0.750L	0.869	0.869			
+D+0.750L+0.750S	1.047	1.047			
+0.60D	0.436	0.436			
L Only	0.190	0.190			
S Only	0.238	0.238			

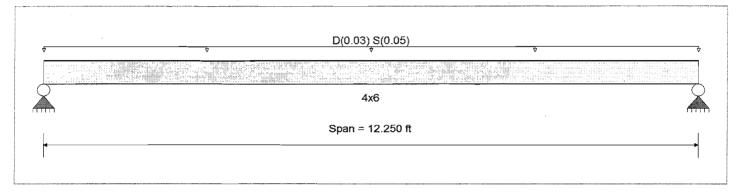
Wood Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31 MYERS ENGINEERING

Lic.#: KW-06008232

DESCRIPTION: 18. Header at Nook SGD

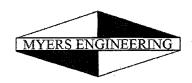

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasticity	
Load Combination 1BC 2018	Fb -	900.0 psi	Ebend-xx	1,600.0ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	. Fv	180.0 psi		
77000 Glado (1.10. <u>2</u>	Ft	575.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsic	nal buckling	•	,	·


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.030, S = 0.050, Tributary Width = 1.0 ft

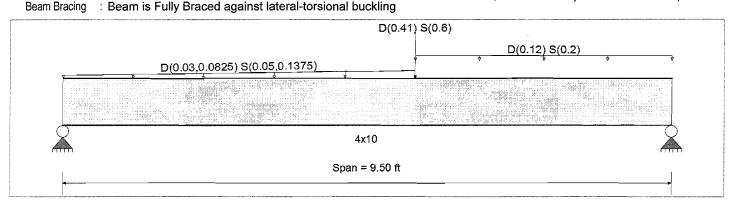
DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	= = =	0.75& 1 Ma 4x6 1,020.50psi 1,345.50psi	ximum Shear Stress Ratio Section used for this span	= =	0.171 : 1 4x6 35.39 psi 207.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	=	+D+S 6.125ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	=	+D+S 11.803 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection		0.328 in Ratio = 0.000 in Ratio = 0.525 in Ratio = 0.000 in Ratio =	447 >=360 0 <360 279 >=240 0 <240		

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	0.490	0.490	·
Overall MiNimum	0.306	0.306	
D Only	0.184	0.184	
+D+L	0.184	0.184	
+D+S	0.490	0.490	
+D+0.750L	0.184	0.184	
+D+0.750L+0.750S	0.413	0.413	
+0.60D	0.110	0.110	
S Only	0.306	0.306	

Wood Beam Lic.#: KW-06008232 File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5.31 MYERS ENGINEERING

DESCRIPTION: 19. Header at ADU


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

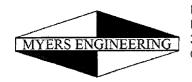
Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	city
Load Combination IBC 2018	Fb -	900.0 psi	Ebend- xx	1,600.0ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0 ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv .	180.0 psi		
11000 Olddo - , 110.2	Ft	575.0 psi	Density	31.210 pcf
Poom Procing Doom in Fully Proceed against lateral force	sianal bualdina		•	•

Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Load for Span Number 1


Varying Uniform Load: D= 0.030->0.08250, S= 0.050->0.1375 k/ft, Extent = 0.0 -->> 5.50 ft, Trib Width = 1.0 ft

Uniform Load : D = 0.120, S = 0.20 k/ft, Extent = 5.50 -->> 9.50 ft, Tributary Width = 1.0 ft

Point Load: D = 0.410, S = 0.60 k @ 5.50 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.952 1 M 4x10	aximum Shear Stress Ratio Section used for this span	=	0.364 : 1 4x10
	=	1,182.25psi		=	75.39 psi
	=	1,242.00psi		=	207.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S 5.513ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+S 8.737 ft Span # 1
Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	n	0.119 in Ratio = 0.000 in Ratio = 0.194 in Ratio = 0.000 in Ratio =	0<360 586>=240		

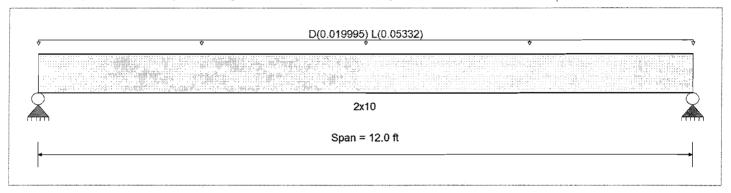
Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	1.244	1.871	
Overall MINimum	0.764	1.151	
D Only	0.480	0.720	
+D+L	0.480	0.720	
+D+S	1.244	1.871	
+D+0.750L	0.480	0.720	
+D+0.750L+0.750S	1.053	1.583	
+0.60D	0.288	0.432	
S Only	0.764	1.151	

Wood Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12 20.5.31 MYERS ENGINEERING

Lic. #: KW-06008232 DESCRIPTION: 20. Floor Joist

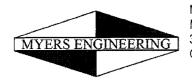

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	850 psi	E: Modulus of Elastic	city
Load Combination IBC 2018	Fb-	850 psi	Ebend- xx	1300 ksi
	Fc - Prll	1300 psi	Eminbend - xx	470ksi
Wood Species : Hem-Fir	Fc - Perp	405 psi		
Wood Grade : No.2	Fv	150 psi		
	. Ft	525 psi	Density	26.84 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsic	onal buckling		Repetitive Member	r Stress Increase


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.0150, L = 0.040 ksf, Tributary Width = 1.333 ft

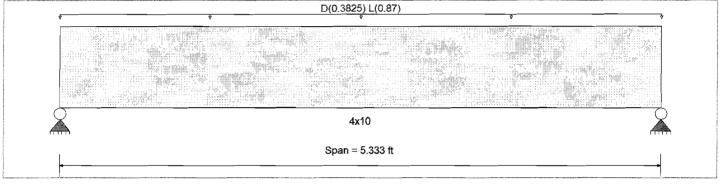
DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.689.1 Ma	aximum Shear Stress Ratio	=	0.278 : 1
Section used for this span		2x10	Section used for this span		2x10
	=	740.33psi		=	41.65 psi
	=	1,075.25 psi		=	150.00 psi
Load Combination		+D+L	Load Combination		+D+L
Location of maximum on span	=	6.000ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	ction	0.195 in Ratio =			194
Max Upward Transient Deflectio	n	0.000 in Ratio =			
Max Downward Total Deflection		0.268 in Ratio =	538 >=360		
Max Upward Total Deflection		0.000 in Ratio =	0 < 360		

Vertical Reactions		Support notation: Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	0.440	0.440	
Overall MINimum	0.320	0.320	
D Only	0.120	0.120	
+D+L	0.440	0.440	
+D+S	0.120	0.120	
+D+0.750L	0.360	0.360	
+D+0.750L+0.750S	0.360	0.360	
+0.60D	0.072	0.072	
L Only	0.320	0.320	
S Only			

Wood Beam Lic. # : KW-06008232 File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

DESCRIPTION: 21. Crawl Beam at Brg wall

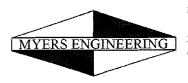

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	900.0 psi	E : Modulus of Elasti	city
Load Combination 1BC 2018	Fb -	900.0 psi	Ebend-xx	1,600.0 ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv	180.0 psi		
Wood Glade , 110.2	Ft	575.0 psi	Density	31.210 pcf
Beam Bracing Beam is Fully Braced against lateral-torsic	nal buckling	'	,	F


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.3825, L = 0.870, Tributary Width = 1.0 ft

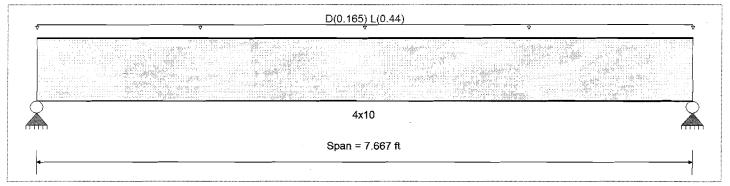
DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio	=	0.991: 1 Ma	aximum Shear Stress Ratio	=	0.615 : 1
Section used for this span		4x10	Section used for this span		4x10
	=	1,070.56psi		=	110.69 psi
	=	1,080.00psi		=	180.00 psi
Load Combination		+D+L	Load Combination		+D+L
Location of maximum on span	=	2.667ft	Location of maximum on span	=	4.574 ft
Span # where maximum occurs	=	Span #1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect		0.043 in Ratio =	1484>=360		
Max Upward Transient Deflection	n	0.000 in Ratio =	0 < 360		
Max Downward Total Deflection		0.062 in Ratio =	1030>=240		The state of the s
Max Upward Total Deflection		0.000 in Ratio =	0<240		

Vertical Reactions		Support notation : Far lef	t is #1 Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	3.340	3.340	
Overall MINimum	2.320	2.320	
D Only	1.020	1.020	
+D+L	3.340	3.340	,
+D+S	1.020	1.020	
+D+0.750L	2.760	2.760	
+D+0.750L+0.750S	2.760	2.760	
+0.60D	0.612	0.612	
L Only	2.320	2.320	
S Only			

Wood Beam Lic.#: KW-06008232 File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

DESCRIPTION: 22. Crawl Beam NOT at Brg wall

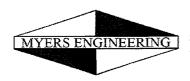

CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design		900.0 psi	E : Modulus of Elasti	city
Load Combination IBC 2018	Fb -	900.0 psi	Ebend-xx	1,600.0ksi
	Fc - Prll	1,350.0 psi	Eminbend - xx	580.0 ksi
Wood Species : DouglasFir-Larch	Fc - Perp	625.0 psi		
Wood Grade : No.2	Fv `	180.0 psi		
WOOD STAGE . TVO.2	Ft	575.0 psi	Density	31.210 pcf
Beam Bracing : Beam is Fully Braced against lateral-torsion	al buckling	·	,	r ·


Applied Loads

Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.1650, L = 0.440 , Tributary Width = 1.0 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	4x10	aximum Shear Stress Ratio Section used for this span	=	0.479 : 1 4x10
	=	1,068.80 psi 1,080.00 psi		=	86.28 psi 180.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	= =	+D+L 3.834ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 6.911 ft Span # 1
Maximum Deflection Max Downward Transient Deflectio Max Upward Transient Deflectio Max Downward Total Deflection Max Upward Total Deflection	'n	0.093 in Ratio = 0.000 in Ratio = 0.128 in Ratio = 0.000 in Ratio =	987 >=360 0 <360 718 >=240 0 <240		

Vertical Reactions		Suppo	ort notation : Far left is #1	Values in KIPS	
Load Combination	Support 1	Support 2			
Overall MAXimum	2.319	2.319			
Overall MINimum	1.687	1.687			
D Only	0.633	0.633			
+D+L	2.319	2.319			
+D+\$	0.633	0.633			
+D+0.750L	1.898	1.898			
+D+0.750L+0.750S	1.898	1.898			
+0.60D	0.380	0.380			
L Only	1.687	1.687			
S Only					

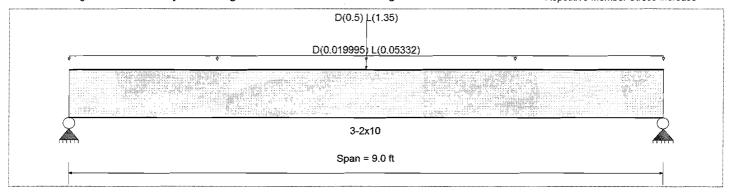
Wood Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: 23. Joist at Stair


CODE REFERENCES

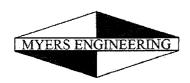
Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	850.0 psi	E : Modulus of Elast	icity
Load Combination JBC 2018	Fb	850.0 psi	Ebend- xx	1,300.0ksi
	Fc - Prll	1,300.0 psi	Eminbend - xx	470.0ksi
Wood Species : Hem-Fir	Fc - Perp	405.0 psi		
Wood Grade : No.2	Fv	150.0 psi		
17554 57445 7.1157 <u>2</u>	Ft	525.0 psi	Density	26.840 pcf
Beam Bracing : Beam is Fully Braced against lateral-	torsional buckling		Repetitive Memb	er Stress Increase

Applied Loads


Service loads entered. Load Factors will be applied for calculations.

Uniform Load : D = 0.0150, L = 0.040 ksf, Tributary Width = 1.333 ft

Point Load: D = 0.50, L = 1.350 k @ 4.50 ft

DESIGN SUMMARY					Design OK
Maximum Bending Stress Ratio Section used for this span	=	0.853 1 Ma 3-2x10	ximum Shear Stress Ratio Section used for this span	=	0.288 : 1 3-2x10
	=	917.19psi		=	43.23 psi
	=	1,075.25 psi		=	150.00 psi
Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 4.500ft Span # 1	Load Combination Location of maximum on span Span # where maximum occurs	=	+D+L 8.245 ft Span # 1
Maximum Deflection Max Downward Transient Defle Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	on	0.113 in Ratio = 0.000 in Ratio = 0.155 in Ratio = 0.000 in Ratio =	957>=480 0<480 697>=360 0<360		

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	1.255	1.255	
Overall MINimum	0.915	0.915	
D Only	0.340	0.340	
+D+L	1.255	1.255	
+D+S	0.340	0.340	
+D+0.750L	1.026	1.026	
+D+0.750L+0.750S	1.026	1.026	
+0.60D	0.204	0.204	
L Only	0.915	0.915	
S Only			

Wood Beam

File: 80xx SE 20th ST.ec6

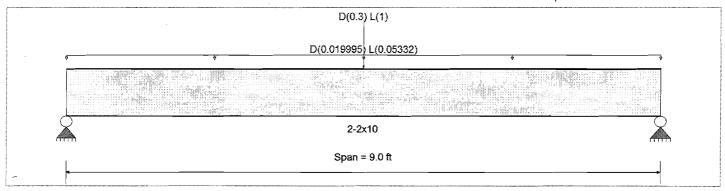
Design OK 0.333:1 2-2x10 49.97 psi 150.00 psi +D+L

8.245 ft

Span #1

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31 MYERS ENGINEERING

Lic.#: KW-06008232 **DESCRIPTION:** 23a. Joist at Stair


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method: Allowable Stress Design	Fb+	850.0 psi	E : Modulus of Elast	icity
Load Combination IBC 2018	Fb -	850.0 psi	Ebend-xx	1,300.0 ksi
	Fc - Prll	1,300.0 psi	Eminbend - xx	470.0ksi
Wood Species : Hem-Fir	Fc - Perp	405.0 psi		
Wood Grade : No.2	Fv	150.0 psi		
77000 Glade 1740.2	Ft	525.0 psi	Density	26.840 pcf
Beam Bracing Beam is Fully Braced against lateral-	torsional buckling	•		er Stress Increase

Applied Loads

DESIGN SUMMARY

Location of maximum on span

Service loads entered. Load Factors will be applied for calculations.

Uniform Load: D = 0.0150, L = 0.040 ksf, Tributary Width = 1.333 ft

Point Load: D = 0.30, L = 1.0 k @ 4.50 ft

				. 600	
Maximum Bending Stress Ratio	=	0.957: 1	Maximum Shear Stress Ratio	=	
Section used for this span		2-2x10	Section used for this span		
	=	1,028.67 psi		=	
	=	1,075.25psi		=	
Load Combination		+D+L	Load Combination		

4.500ft

0.000 in Ratio =

Span # where maximum occurs Span #1 Span # where maximum occurs Maximum Deflection Max Downward Transient Deflection 809>=480 0.133 in Ratio = Max Upward Transient Deflection 0.000 in Ratio = 0 < 480 0.176 in Ratio = Max Downward Total Deflection 614>=360 Max Upward Total Deflection

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	0.980	0.980	
Overall MINimum	0.740	0.740	
D Only	0.240	0.240	
+D+L	0.980	0.980	
+D+S	0.240	0.240	
+D+0.750L	0.795	0.795	
+D+0.750L+0.750S	0.795	0.795	
+0.60D	0.144	0.144	
L Only	0.740	0.740	
S Only			

Location of maximum on span

0 < 360

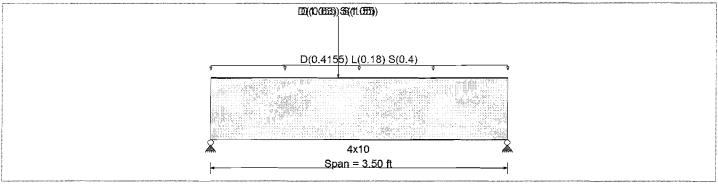
Wood Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5.31 MYERS ENGINEERING

Lic. #: KW-06008232

DESCRIPTION: 24. Header at Mud Rm


CODE REFERENCES

Calculations per NDS 2018, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

Analysis Method : Allowable Stress Design	 Fb+	900 psi	E : Modulus of Elastic	city
Load Combination IBC 2018	Fb -	900 psi	Ebend- xx	1600ksi
	Fc - Pril	1350 psi	Eminbend - xx	580 ksi
Wood Species : Douglas Fir-Larch	Fc - Perp	625 psi		
Wood Grade : No.2	Fv	180 psi		1600ksi
11000 01000	Fb - 900 psi Ebend- xx 1600 ksi Fc - Prll 1350 psi Eminbend - xx 580 ksi Fc - Perp 625 psi Fv 180 psi Ft 575 psi Density 31.21 pcf			
Beam Bracing : Beam is Fully Braced against lateral-t	D18 Fb - 900 psi Ebend- xx 1600 ksi Fc - Prll 1350 psi Eminbend - xx 580 ksi as Fir-Larch Fc - Perp 625 psi Fv 180 psi			

Applied Loads

DESIGN SUMMARY

Service loads entered. Load Factors will be applied for calculations.

Design OK

Uniform Load: D = 0.4155, L = 0.180, S = 0.40, Tributary Width = 1.0 ft

Point Load : D = 1.055, S = 1.550 k @ 1.50 ft Point Load : D = 0.630, S = 1.050 k @ 1.50 ft

Max Downward Total Deflection

Max Upward Total Deflection

Maximum Bending Stress Ratio	=	· 0.945 1 N	Maximum Shear Stress Ratio	=	0.728 : 1
Section used for this span		4x10	Section used for this span		4x10
	=	1,174.28 psi	·	=	150.61 psi
	=	1,242.00 psi		=	207.00 psi
Load Combination		+D+S	Load Combination		+D+S
Location of maximum on span	=	1.507ft	Location of maximum on span	=	0.000 ft
Span # where maximum occurs	=	Span # 1	Span # where maximum occurs	=	Span #1
Maximum Deflection					
Max Downward Transient Deflect	tion	0.014 in Ratio	= 2935>=360		
Max Upward Transient Deflection)	0.000 in Ratio	= 0<360		

0.025 in Ratio = 0.000 in Ratio =

Vertical Reactions		Support notation : Far left is #1	Values in KIPS
Load Combination	Support 1	Support 2	
Overall MAXimum	3.876	3.264	
Overall MINimum	2.186	1.814	
D Only	1.690	1.449	
+D+L	2.005	1.764	
+D+\$	3.876	3.264	
+D+0.750L	1.926	1.686	
+D+0.750L+0.750S	3.566	3.046	
+0.60D	1.014	0.870	
L Only	0.315	0.315	
S Only	2.186	1.814	

1678 >= 240

0 < 240

Gig Harbor, WA 98335

PROJECT:80xx SE 20th Street

Maximum Load For 6x6 DF#1 Wood Post

$$F_c := 1000 \cdot psi \quad C_{Fb} := 1 \quad C_{Fb} := 1 \quad C_M := 1 \quad C_{Ec} := 1 \quad C_{Fc} := 1$$

$$E' := 1600000 \cdot psi$$

$$F''_c := F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 1000 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h} \qquad \underset{\text{CW}}{\text{C}} := 0.8 \quad K_{\text{CE}} := 0.3$$

$$F_{CE} := \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 1008 \cdot psi$$

$$C_{p} := \left[\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F''_{c}}} \right] \cdot K_{f}$$

$$S := \frac{I \cdot 2}{h} \qquad S = 27.7 \cdot in^{3}$$

$$F'_c := C_p \cdot F''_c$$

$$F_c' = 694 \cdot psi$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 694 \cdot psi$ $P_{max} := F'_c \cdot A$

6x6 Wood Post Properties

$$K_f := 1$$
 ($K_{f = 0.6}$ for unbraced nailed built up posts - 0.75 for bolted)

$$h := 5.5 \cdot in$$

$$t := 5.5 \cdot in$$

$$A := t \cdot h \qquad A = 30.2 \cdot in^2$$

$$I := \frac{t \cdot h^3}{12}$$
 $I = 76.3 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 27.7 \cdot in^{3}$$

$$C_{p} = 0.69$$

 $P_{max} = 20989 \cdot lb$ (Maximum post Capacity)

Maximum Load For 6x6 HF#2 Treated Post

$$\underset{\longleftarrow}{\text{psf}} := \frac{\text{psi}}{144} \qquad \underset{\longleftarrow}{\text{plf}} := \text{psf} \cdot \text{ft} \qquad \underset{\longleftarrow}{\text{lb}} := \text{plf} \cdot \text{ft} \qquad \underset{\longleftarrow}{\text{H}} := 10 \cdot \text{ft}$$

$$F_{c} := 460 \cdot psi$$
 $C_{D} := 1$ $C_{Eb} := 1$ $C_{M} := 1$ $C_{t} := 1$ $C_{L} := 1$ $C_{Ec} := 1$

$$F''_c = F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 460 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} := \frac{K_{CE} \cdot E'}{\text{SI}^2}$$

$$F_{CE} = 659 \cdot psi$$

$$C_{\text{pois}} := \begin{bmatrix} 1 + \frac{F_{CE}}{F''_{c}} & \sqrt{\left(1 + \frac{F_{CE}}{F''_{c}}\right)^{2} - \frac{F_{CE}}{F''_{c}}} \\ 2 \cdot C & \sqrt{2 \cdot C} \end{bmatrix} \cdot K_{f}$$

$$S = 27.7 \cdot in^{3}$$

$$C_{p} = 0.8$$

$$F'_{p}:= C_{p}\cdot F''_{p}$$

$$F'_c = 367 \cdot psi$$

$$P_{max} := F'_{c} \cdot A$$

$$K_f = 1.0$$
 ($K_f = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$h_{\lambda} := 5.5 \cdot in$$

$$t := 5.5 \cdot in$$

$$A := t \cdot h \qquad A = 30.2 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12}$$
 $I = 76.3 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 27.7 \cdot in^{-3}$$

$$C_p = 0.8$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 367 \cdot psi$ $P_{max} := F'_c \cdot A$ $P_{max} = 11112 \cdot lb$ (Maximum post Capacity)

Concrete Beam

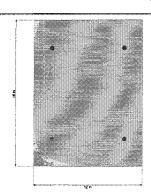
File: 80xx SE 20th ST.ec6

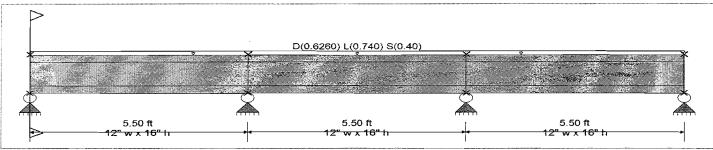
Software copyright ENERCALC, INC. 1983-2020, Build:12.20:5.31

.

Lic #: KW-06008232

DESCRIPTION: A. Grade Beam at supporting Main & Upper


CODE REFERENCES


Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

fc = $fr = frc^{1/2} * 7.50$	=	2.50 ksi 375.0 psi	♦ Phi Values	F	Flexure: 0.90 Shear: 0.750
Ψ Density	=	145.0 pcf	β_1	=	0.850
λ LtWt Factor	=	1.0	- 1		
Elastic Modulus =		2,850.0 ksi	Fy - Stirrups		40.0 ksi
fy - Main Rebar = E - Main Rebar =		60.0 ksi 29,000.0 ksi	E - Stirrups Stirrup Bar Size #	= ‡	29,000.0 ksi 3
E Main Nobal			isting Legs Per Stirrup) =	2

Cross Section & Reinforcing Details

Rectangular Section, Width = 12.0 in, Height = 16.0 in Span #1 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 5.50 ft in this span Span #2 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 5.50 ft in this span Span #3 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 5.50 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 5.50 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 5.50 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 5.50 ft in this span

Beam self weight calculated and added to loads Loads on all spans...

D = 0.6260, L = 0.740, S = 0.40

Uniform Load on ALL spans: D = 0.6260, L = 0.740, S = 0.40 k/ft

DESIGN SUMMARY

DESIGN SUMMARY			Lesig	In UK
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.288 : 1 Typical Section -7.161 k-ft 24.904 k-ft	Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.000 in Ratio = 0.000 in Ratio = 0.002 in Ratio = 0.000 in Ratio =	
Location of maximum on span	0.000 ft	iviax opward Total Deflection	0.000 Natio -	O <480.C
Span # where maximum occurs	Span # 3			

Cross Section Strength & Inertia


Top & Bottom references	are for tension	side of	section
-------------------------	-----------------	---------	---------

		Phi*Mn (k-ft)	Mome	ent of Inertia	(in^4)
Cross Section	Bar Layout Description		icr - Bottom	lcr - Top		
Section 1	2-#4 @ d=3",2-#4 @ d=13",	24.90	24.90	4,096.00	510.90	510.90
Section 2	2-#4 @ d=3",2-#4 @ d=13",	24.90	24.90	4,096.00	510.90	510.90
Section 3	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	510.90	510.90
Vortical	Paactions	Support notation · Far left is #	1			

Vertical Reactions

Support notation : Far lett is #1

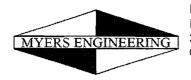
Load CombinationSupport 1Support 2Support 3Support 4Overall MAXimum3.68410.13010.13010.130

Concrete Beam Lic. # : KW-06008232

File: 80xx SE 20th ST.ec6 Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5.31 MYERS ENGINEERING

DESCRIPTION: A. Grade Beam at supporting Main & Upper

rtic			


Vertical Reactions			Support n	otation : Far left is #1	
Load Combination	Support 1	Support 2	Support 3	Support 4	
Overall MINimum	0.880	2.420	2.420	0.880	,
D Only	1.803	4.957	4.957	1.803	
+D+L	3.431	9.434	9.434	3.431	
+D+S	2.683	7.377	7.377	2.683	
+D+0.750L	3.024	8.315	8.315	3.024	
+D+0.750L+0.750S	3.684	10.130	10.130	3.684	•
+0.60D	1.082	2.974	2.974	1.082	
L Only	1.628	4.477	4.477	1.628	
S Only	0.880	2.420	2.420	0.880	

Shear Stirrup Requirements

Between 0.00 to 4.69 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 4.73 to 5.72 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 6.000 in Between 5.76 to 10.74 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 10.78 to 11.77 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 6.000 in Between 11.81 to 16.46 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

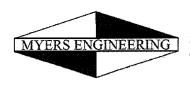
Load Combination		Location (ft)	Bending 9	Stress Results (k	-ft)	
Segment	Span#	along Beam	Mu : Max	Phi*Mnx	Stress Ratio	
AXimum BENDING Envelope						
Span # 1	1	5.500	-6.88	24.90	0.28	
Span # 2	2	5.500	-7.16	24.90	0.29	
Span # 3	3	5.500	-7.16	24.90	0.29	
1.40D	· ·	0.000		200	0.20	
Span # 1	1	5.500	-3.33	24.90	0.13	
Span # 2	2	5.500	-3.47	24.90	0.14	
Span # 3	3	5.500	-3.47	24.90	0.14	
1.20D+1.60L	J	5.500	-0.47	24.30	0.14	
Span # 1	1	E E00	6.20	24.00	0.05	
	1	5.500	-6.30	24.90	0.25	
Span # 2	2	5.500	-6.56	24.90	0.26	
Span # 3	3	5.500	-6.56	24.90	0.26	
1.20D+1.60L+0.50S						
Span # 1	1	5.500	-6.88	24.90	0.28	
Span # 2	2	5.500	-7.16	24.90	0.29	
Span # 3	3	5.500	-7.16	24.90	0.29	
1.20D+0.50L	·		• • • •			
Span # 1	1	5.500	-3.93	24.90	0.16	
Span # 2	2	5.500	-4.09	24.90	0.16	
Span # 3	3	5.500	-4.09	24.90	0.16	
1.20D	3	5.500	-4.03	24.30	0.10	
Span # 1	4	E E00	0.00	04.00	0.44	
	1	5.500	-2.86	24.90	0.11	
Span # 2	2	5.500	-2.97	24.90	0.12	
Span # 3	3	5.500	-2.97	24.90	0.12	
.20D+0.50L+1.60S						
Span # 1	1	5.500	-5.79	24.90	0.23	
Span # 2	2	5.500	-6.03	24.90	0.24	
Span # 3	3	5.500	-6.03	24.90	0.24	
1.20D+1.60S						
Span # 1	1	5.500	-4.71	24.90	0.19	
Span # 2	2	5.500	-4.91	24.90	0.20	
Span # 3	3	5.500	-4.91	24.90	0.20	
1.20D+0.50L+0.50S	J	0.000		200	U.EU	
Span # 1	1	5.500	-4.51	24.90	0.18	
Span # 2	2	5.500	-4.70			
Span # 3	3			24.90	0.19	
.384D+0.50L+0.70S	3	5.500	-4.70	24.90	0.19	
		F 500	5.40	24.00	0.04	
Span # 1	1	5.500	-5.18	24.90	0.21	
Span # 2	2	5.500	-5.40	24.90	0.22	
Span #3	3	5.500	-5.40	24.90	0.22	
90D						
Span # 1	1	5.500	-2.14	24.90	0.09	
Span # 2	2	5.500	-2.23	24.90	0.09	
Span # 3	3	5.500	-2.23	24.90	0.09	
7160D	•					
Span # 1	1	5.500	-1.70	24.90	0.07	
Span # 2	2	5.500	-1.77 -1.77	24.90	0.07	

Concrete Beam

Lic. # : KW-06008232

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31.


MYERS ENGINEERING

DESCRIPTION: A. Grade Beam at supporting Main & Upper

Load Combination			Location (ft)	Bending S	Stress Results (k	-ft)	
Segment	·	Span #	along Beam	Mu : Max	Phi*Mnx	Stress Ratio	
Span # 3	•	3	5.500	-1.77	24.90	0.07	

Overall Maximum Deflections

O TOTAL MAXIMUM	31100010110					
Load Combination	Span	Max. "-" Defl (in)	Location in Span (ft)	Load Combination	Max. "+" Defl (in)	Location in Span (ft)
+D+0.750L+0.750S	1	0.0016	2.530	+D+0.750L+0.750S	-0.0000	5.610
+D+0.750L+0.750S	2	0.0001	2.750	+D+0.750L+0.750S	-0.0001	4.950
+D+0.750L+0.750S	3	0.0016	2.970		0.0000	4.950

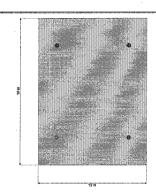
Concrete Beam

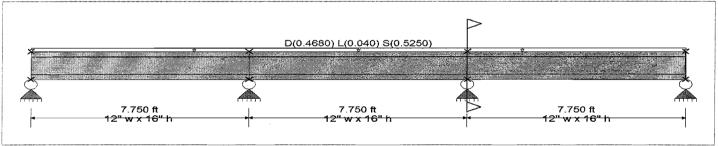
File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20.5:31

Lic.#: KW-06008232

DESCRIPTION: B. Grade Beam supporting Great Rm Room


CODE REFERENCES


Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

fc = $fc^{1/2} * 7.50$	=	2.50 ksi 375.0 psi	Phi Values		Flexure : Shear :	0.90 0.750
ψ Density	=	145.0 pcf	β ₁	=	Onour.	0.850
λ LtWt Factor	=	1.0				
Elastic Modulus =		3,122.0 ksi	Fy - Stirrups		4	0.0 ksi
fy - Main Rebar = E - Main Rebar =		60.0 ksi 29,000.0 ksi	E - Stirrups Stirrup Bar Size	= #	29,00	0.0 ksi 3
_ man rood			sisting Legs Per Stirru	p=		2

Cross Section & Reinforcing Details

Rectangular Section, Width = 12.0 in, Height = 16.0 in

Span #1 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 7.750 ft in this span

Span #2 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 7.750 ft in this span

Span #3 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 7.750 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 7.750 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 7.750 ft in this span

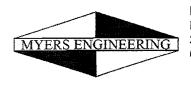
2-#4 at 3.0 in from Bottom, from 0.0 to 7.750 ft in this span

Beam self weight calculated and added to loads

Loads on all spans...

D = 0.4680, L = 0.040, S = 0.5250

Uniform Load on ALL spans: D = 0.4680, L = 0.040, S = 0.5250 k/ft


DESIGN SUMMARY			Desi	gn OK
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.399 : 1 Typical Section -9.932 k-ft 24.904 k-ft	Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.002 in Ratio = 0.000 in Ratio = 0.004 in Ratio =	0 <720.0 23438 >=480
Location of maximum on span	0.000 ft	iviax opward Total Deflection	0.000 in Ratio =	O <480.C
Span # where maximum occurs	Span # 2			***************************************

Cross Section Strength & Inertia

		Phi*Mn (k	:-ft)	Mome	Moment of Inertia (in^4)		
Cross Section	Bar Layout Description	Bottom	Тор	I gross	Icr - Bottom	lcr - Top	
Section 1	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	510.90	510.90	
Section 2	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	510.90	510.90	
Section 3	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	510.90	510.90	
Vartical I	Pagations	Support notation : Far left is #1					

Vertical Reactions

Load Combination Support 1 Support 2 Support 3 Support 4 Overall MAXimum 3.678 10.113 10.113 3.678

Concrete Beam Lic. #: KW-06008232

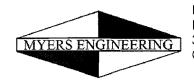
File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31
MYERS ENGINEERING

DESCRIPTION: B. Grade Beam supporting Great Rm Room

Vertica	I R	lead	ctic	ons
---------	-----	------	------	-----

Support notation: Far left is #1


Load Combination	Support 1	Support 2	Support 3	Support 4
Overall MINimum	0.124	0.341	0.341	0.124
D Only	2.050	5.638	5.638	2.050
+D+L	2.174	5.979	5.979	2.174
+D+S	3.678	10.113	10.113	3.678
+D+0.750L	2.143	5.894	5.894	2.143
+D+0.750L+0.750S	3.364	9.250	9.250	3.364
+0.60D	1.230	3.383	3.383	1.230
L Only	0.124	0.341	0.341	0.124
S Only	1.628	4.476	4,476	1.628

Shear Stirrup Requirements

Between 0.00 to 6.67 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 6.72 to 8.06 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 6.000 in Between 8.11 to 15.14 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 15.19 to 16.53 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 6.000 in Between 16.59 to 23.20 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Span #					
Opan #	along Beam	Mu : Max	Phi*Mnx	Stress Ratio	
1	7.750	-9.54	24.90	0.38	
			24.90	0.40	
3	7.750	-9.93	24.90		
•		0.00		5.15	
1	7 750	-5 3/1	24 90	0.21	
	7.750	-0.0 4 5.56	24.00	0.21	
2			24.50	0.22	
3	1.130	-0,00	24.50	0.22	
4	7.750	4.05	04.00	0.00	
	7.750		24.90	0.20	
2			24.90	0.21	
3	7.750	-5.15	24.90	0.21	
1			24.90		
2	7.750	-6.73	24.90	0.27	
3	7.750	-6.73	24.90	0.27	
1	7.750	-4.69	24.90	0.19	
J	1.130	~03	24.30	0.20	
	7.750	4.50	04.00	0.40	
			24.90	0.10	
				0.19	
3	7.750	-4.77	24.90	0.19	
a a					
			24.90	0.38	
2			24.90	0.40	
3	7.750	-9.93	24.90	0.40	
1	7.750	-9.42	24.90	0.38	
		-9.81			
•	1.100	0.01	21.00	0.00	
1	7.750	6 21	24 00	0.25	
1					
2	7.750 7.750				
3	1.150	-0.46	24.90	U.26	
4	7.750	7.54	04.00	0.00	
1				0.30	
2	7.750	-/.82		0.31	
3	7.750	-7.82	24.90	0.31	
1	7.750	-3.43	24.90		
2 ·	7.750				
3	7.750				
•				•	
1	7 750	-2 73	24 90	0.11	
		-2.13	24.00	0.11	
		-2.04	24.30	0.11	
·	60				
	2 3 1 2 3 3 1 2 3 3 1 2 3 3 3 1 2 3 3 1 2 3 3 1 2 3 3 3 3	2 7.750 3 7.750 1 7.750 2 7.750 3 7.750	2 7.750	2 7.750	2 7.750

Concrete Beam


File: 80xx SE 20th ST.ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31

Lic.#: KW-06008232 **DESCRIPTION:** B. Grade Beam supporting Great Rm Room

Load Combination		Location (ft)	Bending :	Stress Results (k	-ft)	
Segment	Span#	along Beam	Mu : Max	Phi*Mnx	Stress Ratio	
Span # 3	3	7.750	-2.84	24.90	0.11	
Overall Maximum Deflections						

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl (in)	Location in Span (ft)	Load Combination	Max. "+" Defl (in)	Location in Span (ft)
+D+S	1	0.0040	3.565	+D+S	-0.0001	7.905
+D+S	2	0.0003	3.875	+D+S	-0.0002	0.775
+D+S	3	0.0040	4.185		0.0000	0.775

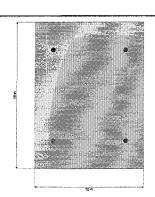
Concrete Beam

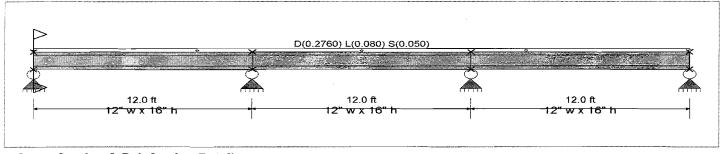
File: 80xx SE 20th ST.ec6

Software copyright ENERGALC, INC. 1983-2020, Build:12:20.5:31

Lic. # : KW-06008232

DESCRIPTION: C. Grade Beam supporting Gable Walls


CODE REFERENCES


Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

fc = $fc^{1/2} * 7.50$	=	2.50 ksi 375.0 psi	Phi Values	١	Flexure : 0.90 Shear : 0.750
Ψ Density	=	145.0 pcf	β ₁	=	0.850
λ LtWt Factor	=	1.0	·		
Elastic Modulus =		3,122.0 ksi	Fy - Stirrups		40.0 ksi
fy - Main Rebar = E - Main Rebar =	:	60.0 ksi 29,000.0 ksi	E - Stirrups Stirrup Bar Size #	= ‡	29,000.0 ksi 3
L - Wall Rebai	•		isting Legs Per Stirrup) =	2

Cross Section & Reinforcing Details

Rectangular Section, Width = 12.0 in, Height = 16.0 in

Span #1 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 12.0 ft in this span

Span #2 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 12.0 ft in this span

Span #3 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 12.0 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 12.0 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 12.0 ft in this span

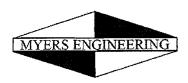
2-#4 at 3.0 in from Bottom, from 0.0 to 12.0 ft in this span

Beam self weight calculated and added to loads Loads on all spans...

D = 0.2760, L = 0.080, S = 0.050

Uniform Load on ALL spans: D = 0.2760, L = 0.080, S = 0.050 k/ft

DESIGN SUMMARY


DESIGN SUMMARY			Desi	gnOK
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.419 : 1 Typical Section -10.434 k-ft 24.904 k-ft	Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.002 in Ratio = 0.000 in Ratio = 0.011 in Ratio =	0 < 720.0 13214 >= 480
Location of maximum on span	0.000 ft	Max Opward Total Deflection	0.000 in Ratio =	O <480.C
Span # where maximum occurs	Span # 2			

Cross Section Strength & Inertia

		Phi*Mn (Phi*Mn (k-ft)			in^4)
Cross Section	Bar Layout Description	Bottom	Тор	l gross	lcr - Bottom	fcr - Top
Section 1	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	472.77	472.77
Section 2	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	472.77	472.77
Section 3	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	472.77	472.77
Vertical Pasetions		Support potation : Far left is #	<u>1</u>			

Vertical Reactions

Load Combination Support 1 Support 2 Support 3 Support 4 Overall MAXimum 2.721 7.482 7.482 2.721

Concrete Beam

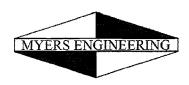
File: 80xx SE 20th ST,ec6
Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31
MYERS ENGINEERING

Lic. #: KW-06008232

DESCRIPTION: C. Grade Beam supporting Gable Walls

Vertical Reactions

Support notation : Far left is #1


Load Combination	Support 1	Support 2	Support 3	Support 4	:	
Overali MINimum	0.240	0.660	0.660	0.240		
D Only	2.253	6.195	6.195	2.253		
+D+L	2.637	7.251	7.251	2.637		
+D+S	2.493	6.855	6.855	2.493		
+D+0.750L	2.541	6.987	6.987	2.541		
+D+0.750L+0.750S	2.721	7.482	7.482	2.721		
+0.60D	1.352	3.717	3.717	1.352		
L Only	0.384	1.056	1.056	0.384		
S Only	0.240	0.660	0.660	0.240		

Shear Stirrup Requirements

Entire Beam Span Length: Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bending 9	Bending Stress Results (k-ft)			
Segment	Span #	along Beam	Mu : Max	Phi*Mnx	Stress Ratio		
/AXimum BENDING Envelope							
Span # 1	1	12.000	-10.02	24.90	0.40		
Span # 2	2	12.000	-10.43	24.90	0.42		
Span # 3	3	12.000	-10.43	24.90	0.42		
1.40D							
Span # 1	1	12.000	-9.09	24.90	0.36		
Span # 2	2	12.000	-9.46	24.90	0.38		
Span # 3	3	12.000	-9.46	24.90	0.38		
1.20D+1.60L	ŭ	12.000	-0.40	27.00	0.00		
Span # 1	1	12.000	-9.56	24.90	0.38		
Span # 2	2	12.000	-9.95	24.90 24.90	0.40		
	3		-9.90	24.90			
Span # 3	3	12.000	-9.95	24.90	0.40		
1.20D+1.60L+0.50S	4	40.000	0.00	04.00	0.40		
Span # 1	1	12.000	-9.90	24.90	0.40		
Span # 2	2	12.000	-10.31	24.90	0.41		
Span # 3	3	12.000	-10.31	24.90	0.41		
1.20D+0.50L							
Span # 1	1	12.000	-8.34	24.90	0.33		
Span # 2	2	12.000	-8.69	24.90	0.35		
Span # 3	3	12.000	-8.69	24.90	0.35		
.20D					-		
Span # 1	1	12.000	-7.79	24.90	0.31		
Span # 2	. 2	12.000	-8.11	24.90	0.33		
Span # 3	. 3	12.000	-8.11	24.90	0.33		
.20D+0.50L+1.60S		12.000	0.71	21.00	0.00		
Span # 1	1	12.000	-9.45	24.90	0.38		
Span # 2	2	12.000	-9.84	24.90	0.40		
Span # 3	3	12.000					
	J	12.000	-9.84	24.90	0.40		
.20D+1.60S	4	. 40 000	0.00	04.00	0.00		
Span # 1	1	12.000	-8.89	24.90	0.36		
Span # 2	2	12.000	-9.26	24.90	0.37		
Span #3	3	12.000	- 9 .26	24.90	0.37		
.20D+0.50L+0.50S							
Span # 1	1	12.000	-8.69	24.90	0.35		
Span # 2	2	12.000	-9.05	24.90	0.36		
Span # 3	3	12.000	-9.05	24.90	0.36		
.384D+0.50L+0.70S							
Span # 1	1	12.000	-10.02	24.90	0.40		
Span # 2	2	12.000	-10.43	24.90	0.42		
Span # 3	3	12.000	-10.43	24.90	0.42		
90D	•				***-		
Span # 1	1	12.000	-5.84	24.90	0.23		
Span # 2	2	12.000	-6.08	24.90	0.24		
Span # 3	3	12.000	-6.08	24.90	0.24		
.7160D	3	12.000	-0.00	24.50	U.2 4		
	4	12.000	4.05	04.00	0.40		
Span # 1	1	12.000	-4.65 4.04	24.90	0.19		
Span # 2	2	12.000	-4.84	24.90	0.19		
Span #3	3	12.000	-4.84	24.90	0.19		

Concrete Beam


File: 80xx SE 20th ST ec6
Software copyright ENERCALC, INC. 1983-2020, Build: 12.20.5.31
MYERS ENGINEERING

Lic, #: KW-06008232

DESCRIPTION: C. Grade Beam supporting Gable Walls

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl (in)	Location in Span (ft)	Load Combination	Max. "+" Defl (in)	Location in Span (ft)
+D+0.750L+0.750S	1	0.0109	5.520	+D+0.750L+0.750S	-0.0002	12.240
+D+0.750L+0.750S	. 2	0.0008	6.000	+D+0.750L+0.750S	-0.0006	1.200
+D+0.750L+0.750S	3	0.0109	6.480		0.0000	1.200

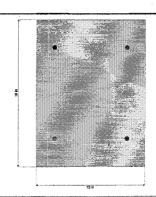
Concrete Beam

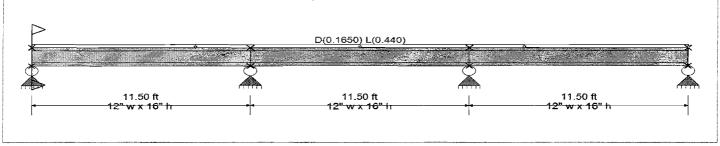
File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31

MYERS ENGINEERING

Lic. # : KW-06008232 **DESCRIPTION:** D. Grade Beam supporting Great Rm Floor


CODE REFERENCES


Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

fc = $fc^{-1/2} * 7.50$	=	2.50 ksi 375.0 psi	♠ Phi Values		Flexure: 0.90 Shear: 0.750
Ψ Density	=	145.0 pcf	β ₁	=	0.850
λ LtWt Factor	=	1.0	,		
Elastic Modulus =		3,122.0 ksi	Fy - Stirrups		40.0 ksi
fy - Main Rebar = E - Main Rebar =		60.0 ksi 29,000.0 ksi	E - Stirrups Stirrup Bar Size#	=	29,000.0 ksi 3
L - Main Nebai —			sting Legs Per Stirrup	=	2

Cross Section & Reinforcing Details

Rectangular Section, Width = $\overline{12.0}$ in, Height = 16.0 in

Span #1 Reinforcing....

2#4 at 3.0 in from Top, from 0.0 to 11.50 ft in this span

Span #2 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 11.50 ft in this span Span #3 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 11.50 ft in this span

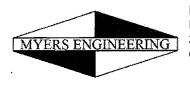
2-#4 at 3.0 in from Bottom, from 0.0 to 11.50 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 11.50 ft in this span

2#4 at 3.0 in from Bottom, from 0.0 to 11.50 ft in this span

Beam self weight calculated and added to loads Loads on all spans...

D = 0.1650, L = 0.440


Uniform Load on ALL spans: D = 0.1650, L = 0.440 k/ft

DESIGN STIMMARY

	DESIGN SUMMART					neale	
N	Maximum Bending Stress Ratio Section used for this span Mu : Applied Mn * Phi : Allowable	=	0.602 : 1 Typical Section -14.997 k-ft 24.904 k-ft	Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.007 in 0.000 in 0.013 in 0.000 in	Ratio = Ratio =	0 <720.0 10660 >=480.
	Location of maximum on span		0.000 ft	Max opward Total Deflection	0.000 111	Natio -	O <480.C
	Span # where maximum occurs		Span # 2				

Cross Se	ection Strength & inertia	iop	op & Bottom reterences are for tension side of section					
		Phi*Mn (k-ft	Phi*Mn (k-ft)		Moment of Inertia (in^4)			
Cross Section	Bar Layout Description	Bottom T	ор	gross	Icr - Bottom	Icr - Top		
Section 1	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	472.77	472.77		
Section 2	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	472.77	472.77		
Section 3	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	472.77	472.77		
Vertical	Reactions	Support notation: Far left is #1						

Load Combination Support 1 Support 2 Support 3 Support 4 Overall MAXimum 3.672 10.099 10.099 3.672

Concrete Beam Lic.#: KW-06008232

File; 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12.20.5.31 MYERS ENGINEERING

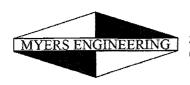
DESCRIPTION: D. Grade Beam supporting Great Rm Floor

Vertical Re	actions
-------------	---------

Support notation: Far left is #1

Load Combination	Support 1	Support 2	Support 3	Support 4	 	
Overall MINimum	0.989	2.720	2.720	0.989		
D Only	1.648	4.533	4.533	1.648	•	
+D+L	3.672	10.099	10.099	3.672		
+D+0.750L	3.166	8.707	8.707	3.166		
+0.60D	0.989	2.720	2.720	0.989		
L Only	2.024	5.566	5.566	2.024		

Shear Stirrup Requirements


Between 0.00 to 9.81 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 9.89 to 12.11 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 6.000 in Between 12.19 to 22.31 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 22.39 to 24.61 ft, PhiVc/2 < Vu < PhiVc/, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 6.000 in Between 24.69 to 34.42 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bending :	Stress Results (k	:-ft)	
Segment	Span #	along Beam	Mu : Max	Phi*Mnx	Stress Ratio	
MAXimum BENDING Envelope						
Span # 1	1	11.500	-14.40	24.90	0.58	
Span # 2	2 3	11.500	-15.00	24.90	0.60	
Span # 3	3	11.500	-15.00	24.90	0.60	
+1.40D						
Span # 1	1	11.500	-6.37	24.90	0.26	
Span # 2	2 3	11.500	-6.63	24.90	0.27	
Span #3	3	11.500	-6.63	24.90	0.27	
+1.20D+1.60L						
Span # 1	1 •	11.500	-14.40	24.90	0.58	
Span # 2	2 3	11.500	-15.00	24.90	0.60	
Span # 3	3	11.500	-15.00	24.90	0.60	
+1.20D+0.50L	•					
Span # 1	1	11.500	-8.25	24.90	0.33	
Span # 2	2	11.500	-8.60	24.90	0.35	
Span # 3	3	11.500	-8.60	24.90	0.35	
+1.20D						
Span # 1	1	11.500	-5.46	24.90	0.22	
Span # 2	2 3	11.500	-5.69	24.90	0.23	
Span # 3	3	11.500	-5.69	24.90	0.23	
+1.384D+0.50L						
Span # 1	1	11.500	-9.09	24.90	0.37	
Span # 2	2 3	11.500	-9.47	24.90	0.38	
Span #3	3	11.500	-9.47	24.90	0.38	
+0.90D	•			•		
Span # 1	1 .	11.500	-4 .10	24.90	0.16	
Span # 2	2 3	11.500	-4.27	24.90	0.17	
Span #3	3	11.500	-4.27	24.90	0.17	
+0.7160D						
Span # 1	1	11.500	-3.26	24.90	0.13	
Span # 2	2	11.500	-3.39	24.90	0.14	
Span # 3	3	11.500	-3.39	24.90	0.14	
•					=	

Overall Maximum Deflections

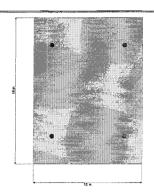
Load Combination	Span	Max. "-" Defl (in)	Location in Span (ft)	Load Combination	Max. "+" Defl (in)	Location in Span (ft)
+D+L	1	0.0129	5.290	+D+L	-0.0002	11.730
+D+L	. 2	0.0010	5.750	+D+L	-0.0008	1.150
+D+L	3	0.0129	6.210		0.0000	1.150

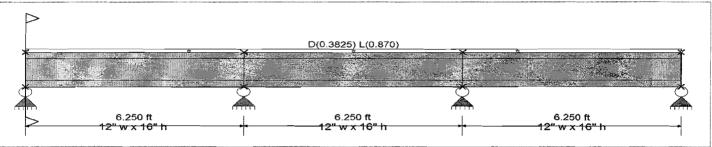
Concrete Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20.5:31 MYERS ENGINEERING

Lic.#: KW-06008232 **DESCRIPTION:** E. Grade Beam supporting Den Wall


CODE REFERENCES


Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

fc = fr = fc ^{1/2} * 7.50		2.50 ksi	φ Phi Values		Flexure:	0.90
fr = f'c = * 7.50	= 3	375.0 psi			Shear:	0.750
Ψ Density	= '	145.0 pcf	β_1	=		0.850
λ LtWt Factor	=	1.0				
Elastic Modulus =	3,1	122.0 ksi	Fy - Stirrups		4	0.0 ksi
fy - Main Rebar =	20.0	60.0 ksi 000.0 ksi	E - Stirrups Stirrup Bar Size:	= #	29,00	0.0 ksi 3
E - Main Rebar =			sisting Legs Per Stirru	p =		2

Cross Section & Reinforcing Details

Rectangular Section, Width = 12.0 in, Height = 16.0 in Span #1 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 6.250 ft in this span Span #2 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 6.250 ft in this span Span #3 Reinforcing....

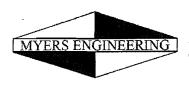
2-#4 at 3.0 in from Top, from 0.0 to 6.250 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 6.250 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 6.250 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 6.250 ft in this span

Beam self weight calculated and added to loads Loads on all spans...


D = 0.3825, L = 0.870

Uniform Load on ALL spans: D = 0.3825, L = 0.870 k/ft

DESIGN SUMMARY			Desig	n OK
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.327 : 1 Typical Section -8.137 k-ft 24.904 k-ft	Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection	0.000 in Ratio = 0.002 in Ratio =	0 <720.0 36668 >=480
Location of maximum on span	0.000 ft	Max Upward Total Deflection	0.000 in Ratio =	O <480.C
Span # where maximum occurs	Span #3			

Cross Section Strength & Inertia Top & Bottom references are for tension side of section Phi*Mn (k-ft) Moment of Inertia Cross Section Bar Layout Description **Bottom** Top Icr - Bottom Icr - Top I gross Section 1 2-#4 @ d=3",2-#4 @ d=13", 24.90 24.90 4.096.00 472.77 472.77 Section 2 2-#4 @ d=3",2-#4 @ d=13", 24.90 24.90 4,096.00 472.77 472.77 2-#4 @ d=3",2-#4 @ d=13", 24.90 4,096.00 Section 3 24.90 472.77 472.77

Support notation: Far left is #1 Vertical Reactions Load Combination Support 1 Support 2 Support 3 Support 4 Overall MAXimum 9.940 3.615 9.940 3.615

Concrete Beam

File: 80xx SE 20th ST.ec6
Software copyright ENERCALC, INC. 1983-2020; Build:12.20.5.31
MYERS ENGINEERING

Lic. # : KW-06008232

DESCRIPTION: E. Grade Beam supporting Den Wall

Vertical	Reactions
----------	-----------

Support notation: Far left is #1

Load Combination	Support 1	Support 2	Support 3	Support 4				
Overall MINimum	0.864	2.375	2.375	0.864		_	 	
D Only	1.440	3.959	3.959	1.440				
+D+L	3.615	9.940	9.940	3.615				
+D+0.750L	3.071	8.445	8.445	3.071				
+0.60D	0.864	2.375	2.375	0.864				
L Only	2.175	5.981	5.981	2.175				

Shear Stirrup Requirements

Between 0.00 to 5.33 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 5.38 to 6.50 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 6.54 to 12.21 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 12.25 to 13.38 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 13.42 to 18.71 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bending S	Stress Results (k	-ft)	
Segment	Span #	along Beam	Mu : Max	Phi*Mnx	Stress Ratio	
MAXimum BENDING Envelope						
Span # 1	1	6.250	-7.81	24.90	0.31	
Span # 2	2	6.250	-8.14	24.90	0.33	
Span # 3	3	6.250	-8.14	24.90	0.33	
1.40D						
Span # 1	1	6.250	-3.02	24.90	0.12	
Span # 2	2	6.250	-3.15	24.90	0.13	
Span #3	2 3	6.250	-3.15	24.90	0.13	
1.20D+1.60L						
Span # 1	1	6.250	-7.81	24.90	0.31	
Span # 2	2	6.250	-8.14	24.90	0.33	
Span # 3	2 3	6.250	-8.14	24.90	0.33	
1.20D+0.50L						
Span # 1	1	6.250	-4.22	24.90	0.17	
Span # 2	2	6.250	-4.40	24.90	0.18	
Span #3	2 3	6.250	-4.40	24.90	0.18	
1.20D						
Span # 1	1	6.250	-2.59	24.90	0.10	
Span # 2	2	6.250	-2.70	24.90	0.11	
Span # 3	2 3	6.250	-2.70	24.90	0.11	
1.384D+0.50L						
Span # 1	1	6.250	-4.62	24.90	0.19	
Span # 2	2	6.250	-4.81	24.90	0.19	
Span # 3	2 3	6.250	-4.81	24.90	0.19	
0.90D						
Span # 1	1	6.250	-1.94	24.90	0.08	
Span # 2	2 3	6.250	-2.02	24.90	0.08	
Span # 3	3	6.250	-2.02	24.90	0.08	
0.7 ¹ 60D						
Span # 1	1	6.250	-1.55	24.90	0.06	
Span # 2	2 3	6.250	-1.61	24.90	0.06	
Span # 3	3	6.250	-1.61	24.90	0.06	

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl (in)	Location in Span (ft)	Load Combination	Max. "+" Defl (in)	Location in Span (ft)
+D+L	1	0.0020	2.875	+D+L	-0.0000	6.375
+D+L	2	0.0002	3.125	+D+L	-0.0001	5.625
+D+L	3	0.0020	3.375		0.0000	5.625

Concrete Beam

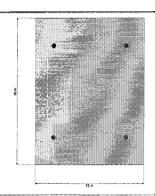
File: 80xx SE 20th ST.ec6

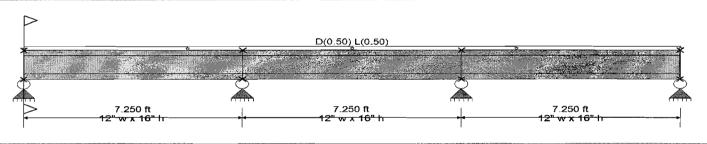
Software copyright ENERCALC; INC. 1983-2020, Build:12.20.5.31

MYERS ENGINEERING

Lic. #: KW-06008232

DESCRIPTION: F. Grade Beam at Garage Floor


CODE REFERENCES


Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combination Set: IBC 2018

Material Properties

fc = $fc^{1/2} * 7.50$	=	2.50 ksi 375.0 psi	♦ Phi Values	i	Flexure: 0.90 Shear: 0.750
Ψ Density	=	145.0 pcf	β_1	=	0.850
λ LtWt Factor	=	1.0	• •		
Elastic Modulus =		3,122.0 ksi	Fy - Stirrups		40.0 ksi
fy - Main Rebar = E - Main Rebar =	;	60.0 ksi 29.000.0 ksi	E - Stirrups Stirrup Bar Size	= # .	29,000.0 ksi 3
L Main Robai	•		sisting Legs Per Stirru	ıp =	. 2

Cross Section & Reinforcing Details

Rectangular Section, Width = 12.0 in, Height = 16.0 in

Span #1 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 7.250 ft in this span

Span #2 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 7.250 ft in this span

Span #3 Reinforcing....

2-#4 at 3.0 in from Top, from 0.0 to 7.250 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 7.250 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 7.250 ft in this span

2-#4 at 3.0 in from Bottom, from 0.0 to 7.250 ft in this span

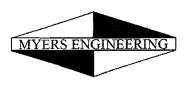
Beam self weight calculated and added to loads Loads on all spans...

D = 0.050, L = 0.050

Uniform Load on ALL spans: D = 0.050, L = 0.050 ksf, Tributary Width = 10.0 ft

DESIGN SUMMARY			Desig	n OK
Maximum Bending Stress Ratio = Section used for this span Mu : Applied Mn * Phi : Allowable	0.344 : 1 Typical Section -8.578 k-ft 24.904 k-ft	Maximum Deflection Max Downward Transient Deflection Max Upward Transient Deflection Max Downward Total Deflection Max Upward Total Deflection	0.001 in Ratio = 0.000 in Ratio = 0.003 in Ratio =	0 <720.0 28462 >=480.
Location of maximum on span	0.000 ft	Max Opward Total Deflection	0.000 in Ratio =	0 <480.C
Span # where maximum occurs	Span # 2			

Cross Section Strength & Inertia


Top & Bottom references are for	or tension side of section
---------------------------------	----------------------------

		Phi*Mn (k	Phi*Mn (k-ft)		Moment of Inertia (in^4)		
Cross Section	Bar Layout Description	Bottom	Тор	l gross	Icr - Bottom	Icr - Top	
Section 1	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	472.77	472.77	
Section 2	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	472.77	472.77	
Section 3	2- #4 @ d=3",2- #4 @ d=13",	24.90	24.90	4,096.00	472.77	472.77	
Mandanati	D 4!	Compart potation . For last in #4					

Vertical Reactions

Suppo	rt notation	: Far	leπ is #1	

Load Combination Support 1 Support 2 Support 3 Support 4 Overall MAXimum 3.461 9.517 3.461

Concrete Beam

File: 80xx SE 20th ST.ec6

Software copyright ENERCALC, INC. 1983-2020, Build:12:20:5:31

Lic. # : KW-06008232

DESCRIPTION: F. Grade Beam at Garage Floor

		tions

Support notation : Far left is #1

Load Combination	Support 1	Support 2	Support 3	Support 4		
Överall MiNimum	1.206	3.318	3.318	1.206		
D Only	2.011	5.529	5.529	2.011		
+D+L	3.461	9.517	9.517	3.461		
+D+0.750L	3.098	8.520	8.520	3.098		
+0.60D	1.206	3.318	3.318	1.206		
L Only	1.450	3.987	3.987	1.450		

Shear Stirrup Requirements

Between 0.00 to 6.53 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 6.57 to 7.25 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 6.000 in Between 7.30 to 14.45 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in Between 14.50 to 15.18 ft, PhiVc/2 < Vu <= PhiVc, Req'd Vs = Min 9.6.3.1, use #3 stirrups spaced at 6.000 in Between 15.23 to 21.70 ft, Vu < PhiVc/2, Req'd Vs = Not Reqd 9.6.3.1, use #3 stirrups spaced at 0.000 in

Maximum Forces & Stresses for Load Combinations

Load Combination		Location (ft)	Bending Stress Results (k-ft)			-
Segment	Span #	along Beam	Mu : Max	Phi*Mnx	Stress Ratio	
MAXimum BENDING Envelope		-	_			
Span # 1	1	7.250	-8.24	24.90	0.33	
Span # 2	2 3	7.250	-8.58	24.90	0.34	
Span # 3	3	7.250	-8.58	24.90	0.34	
+1.40D						
Span # 1	1	7.250	-4.90	24.90	0.20	
Span # 2	2 3	7.250	-5.10	24.90	0.20	
Span # 3	3	7.250	-5.10	24.90	0.20	
+1.20D+1.60L						
Span # 1	1	7.250	-8.24	24.90	0.33	
Span # 2	2 3	7.250	-8.58	24.90	0.34	
Span # 3	3	7.250	-8.58	24.90	0.34	
+1.20D+0.50L	•		0.00	2	•.•.	
Span # 1	1	7.250	-5.46	24.90	0.22	
Span # 2	2	7.250	-5.69	24.90	0.23	
Span # 3	2 3	7.250	-5.69	24.90	0.23	
+1.20D	•	7.200	0.00		V.24	
Span # 1	1	7.250	-4.20	24.90	0.17	
Span # 2		7.250	-4.37	24.90	0.18	
Span # 3	. 2	7.250	-4.37	24.90	0.18	
+1.384D+0.50L	ū	1.200		21.00	0.10	
Span # 1	1	7.250	-6.10	24.90	0.25	
Span # 2	2	7.250	-6.36	24.90	0.26	
Span # 3	2 3	7.250	-6.36	24.90	0.26	
+0.90D	ŭ	7.200	-0.00	24.50	0.20	
Span # 1	1	7.250	-3.15	24.90	0.13	
Span # 2	2	7.250	-3.28	24.90	0.13	
Span # 3	2 3	7.250	-3.28	24.90	0.13	
+0.7160D	3	1.200	-5.20	27.30	0.10	
Span # 1	1	7.250	-2.51	24.90	0.10	
Span # 2	2	7.250	-2.61	24.90	0.10	
Span # 3	2 3	7.250	-2.61	24.90	0.10	
Opuli II O	3	1.200	-2.01	27.00	0.10	

Overall Maximum Deflections

Load Combination	Span	Max. "-" Defl (in)	Location in Span (ft)	Load Combination	Max. "+" Defl (in)	Location in Span (ft)
+D+L	1	0.0031	3.335	+D+L	-0.0001	7.395
+D+L	2	0.0002	3.625	+D+L	-0.0002	0.725
+D+L	3	0.0031	3.915		0.0000	0.725

Maximum Load For 3-2x6 HF Stud Built up Wood Post

$$psf := \frac{psi}{144} \quad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_{\text{CA}} = 800 \cdot \text{psi}$$
 $C_{\text{CB}} = 1$ $C_{\text{CB}} = 1$ $C_{\text{CA}} = 1$ $C_{\text{CA}} = 1$ $C_{\text{CA}} = 1.1$

$$F''_c = F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 756 \cdot psi$$

$$C_{\text{MW}} := \begin{bmatrix} 1 + \frac{F_{CE}}{F''_{c}} \\ \frac{1}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{\frac{F_{CE}}{F''_{c}}}{C}} \end{bmatrix} \cdot K_{f}$$

$$S_{\text{S}} := \frac{I \cdot 2}{h} \qquad S = 22.7 \cdot in^{3}$$

$$C_{p} = 0.64$$

$$F'_{c} := C_{p} \cdot F''_{c}$$

$$F'_c = 560 \cdot psi$$

$$P_{max} := F'_{c} \cdot A$$

3-2x6 Built Up Post Properties

$$K_f := 1.0$$
 ($K_f = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$h_{A} := (5.5) \cdot in$$

$$t := 3 \cdot (1.5) \cdot in$$

$$A := t \cdot h \qquad A = 24.8 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12}$$
 $I = 62.4 \cdot in^4$

$$S := \frac{I \cdot 2}{h}$$
 $S = 22.7 \cdot in^3$

$$C_p = 0.64$$

 $F'_c := C_p \cdot F''_c$ $F'_c = 560 \cdot psi$ $P_{max} := F'_c \cdot A$ $P_{max} = 13863 \cdot lb$ (Maximum post Capacity)

Maximum Load For 2-2x6 HF Stud Built up Wood Post

$$psf := \frac{psi}{144}$$
 $plf := psf \cdot ft$ $lb := plf \cdot ft$ $H := 10 \cdot ft$

$$F_{\text{th}} = 800 \cdot \text{psi}$$
 $C_{\text{th}} = 1$ $C_{\text{th}} = 1$

$$F''_{c} := F_{c} \cdot C_{D} \cdot C_{Fc} \qquad F''_{c} = 880 \cdot psi$$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SI^2}$$

$$F_{CE} = 756 \cdot psi$$

$$C_{\text{p}} := \begin{bmatrix} 1 + \frac{F_{\text{CE}}}{F''_{\text{c}}} \\ \frac{1}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{\text{CE}}}{F''_{\text{c}}}}{2 \cdot C}\right)^2 - \frac{F_{\text{CE}}}{F''_{\text{c}}}} \\ - \frac{F_{\text{CE}}}{C} - \frac{F_{\text{CE}}}{F''_{\text{c}}} - \frac{F_{\text{CE}}}{C} \\ - \frac{F_{\text{CE}}}{C} - \frac{F_{$$

$$F'_{c} := C_{p} \cdot F''_{c}$$

$$F'_c = 560 \cdot psi$$

$$P_{\text{max}} = F'_{\text{c}} A$$

2-2x6 Built Up Post Properties

$$K_{f} = 1.0$$
 ($K_{f=0.6 \text{ for unbraced nailed}}$

$$h := 5.5 \cdot in$$

$$t = (2) \cdot 1.5 \cdot in$$

$$A := t \cdot h \qquad A = 16.5 \cdot in^2$$

$$I := \frac{t \cdot h^3}{12}$$
 $I = 41.6 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 15.1 \cdot in^3$$

$$C_p = 0.64$$

$$F'_c = 560 \cdot psi$$
 $P_{max} = F'_c \cdot A$ $P_{max} = 9242 \cdot lb$ (Maximum post Capacity)

Maximum Load For 3-2x4 HF Stud Built up Wood Post

$$psf := \frac{psi}{144} \qquad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_{\text{Ch}} := 800 \cdot \text{psi}$$
 $C_{\text{Ch}} := 1$ $C_{\text{Kh}} := 1$ $C_{\text{Ch}} := 1$ $C_{\text{Ch}} := 1$ $C_{\text{Ch}} := 1 \cdot C_{\text{Ch}} := 1.1$

$$F''_c = F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 306 \cdot psi$$

$$C_{\text{pr}} := \begin{bmatrix}
1 + \frac{F_{CE}}{F''_{c}} \\
2 \cdot C
\end{bmatrix} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^{2} - \frac{F_{CE}}{F''_{c}}} - \frac{F_{CE}}{C} \end{bmatrix}} \cdot K_{f} \qquad S = 9.2 \cdot in^{3}$$

$$F'_{o}:= C_{p} \cdot F''_{o}$$

$$F_c = 280 \cdot ps$$

$$P_{\text{max}} := F'_{c}$$

3-2x4 Built Up Post Properties

$$h := 3.5 \cdot in$$

$$t := 3 \cdot 1.5 \cdot in$$

$$A := t \cdot h \qquad A = 15.7 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12} \qquad I = 16.1 \cdot in^4$$

$$S := \frac{I \cdot 2}{h}$$
 $S = 9.2 \cdot in$

$$C_p = 0.32$$

 $F'_c := C_p \cdot F''_c$ $F'_c = 280 \cdot psi$ $P_{max} := F'_c \cdot A$ $P_{max} = 4411 \cdot lb$ (Maximum post Capacity)

Maximum Load For 2-2x4 HFStud Built up Wood Post

$$psf := \frac{psi}{144} \quad plf := psf \cdot ft \qquad lb := plf \cdot ft \qquad H := 10 \cdot ft$$

$$F_{\text{ch}} := 800 \cdot \text{psi}$$
 $C_{\text{D}} := 1$ $C_{\text{Eh}} := 1$ $C_{\text{Ch}} := 1$ $C_{\text{L}} := 1$ $C_{\text{Eh}} := 1.1$

$$E'_{a} := 1200000 \cdot psi$$

$$F''_c = F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 880 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SI^2}$$

$$F_{CE} = 306 \cdot psi$$

$$C_{\text{MR}} := \begin{bmatrix} 1 + \frac{F_{CE}}{F''_{c}} \\ \frac{1}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{CE}}{F''_{c}}}{2 \cdot C}\right)^2 - \frac{F_{CE}}{C}} \end{bmatrix} \cdot K_{f}$$

$$S_{\text{M}} := \frac{I \cdot 2}{h}$$

$$S = 6.1 \cdot in^3$$

$$C_{p} = 0.32$$

$$F_{ac} := C_{b} \cdot F_{c}$$

$$F_c = 280 \cdot psi$$

$$P_{c} = F'_{c} A$$

2-2x4 Built Up Post Properties

$$h := 3.5 \cdot in$$

$$t := (2) \cdot 1.5 \cdot in$$

$$A := t \cdot h \qquad A = 10.5 \cdot in^2$$

$$I = \frac{t \cdot h^3}{12} \qquad I = 10.7 \cdot in^4$$

$$S = \frac{I \cdot 2}{h} \qquad S = 6.1 \cdot in^{3}$$

$$C_p = 0.32$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 280 \cdot psi$ $P_{max} := F'_c \cdot A$ $P_{max} = 2941 \cdot lb$ (Maximum post Capacity)

Email: myengineer@centurytel.net

Maximum Load For 4x4 HF#2 Treated Post

$$F_{\infty} := 1040 \cdot \text{psi}$$
 $C_{\text{D}} := 1$ $C_{\text{Fb}} := 1$ $C_{\text{C}} := 1$ $C_{\text{C}} := 1$ $C_{\text{C}} := 1$

$$F''_c = F_c \cdot C_D \cdot C_{Fc}$$
 $F''_c = 1040 \cdot psi$

Axial Load Capacity

Slenderness Ratio (SL)

$$SL := \frac{H}{h}$$
 $C := 0.8$ $K_{CE} := 0.3$

$$F_{CE} = \frac{K_{CE} \cdot E'}{SL^2}$$

$$F_{CE} = 807 \cdot psi$$

$$C_{\text{RR}} := \left[\frac{1 + \frac{F_{\text{CE}}}{F''_{\text{C}}}}{2 \cdot C} - \sqrt{\left(\frac{1 + \frac{F_{\text{CE}}}{F''_{\text{C}}}}{2 \cdot C}\right)^2 - \frac{F_{\text{CE}}}{F''_{\text{C}}}} \right] \cdot K_f$$

$$S := \frac{I \cdot 2}{h}$$

$$S = 7.1 \cdot \text{in}^3$$

$$C_p = 0.6$$

$$F'_c := C_p \cdot F''_c$$
 $F'_c = 622 \cdot psi$ $P_{max} := F'_c \cdot A$ $P_{max} = 7618 \cdot lb$ (Maximum post Capacity)

4x4 Treated Wood Post Properties

$$K_{f} = 1.0$$
 ($K_{f} = 0.6$ for unbraced nailed built up posts - 0.75 for bolted)

$$h := 3.5 \cdot in$$

$$t = 3.5 \cdot in$$

$$A := t \cdot h \qquad A = 12.2 \cdot in^2$$

$$I := \frac{t \cdot h^3}{12}$$
 $I = 12.5 \cdot in^4$

$$S := \frac{I \cdot 2}{h} \qquad S = 7.1 \cdot in^{\frac{3}{2}}$$

$$C_{\rm n} = 0.6$$